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Quantitative aspects of natural 
languages
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History
Mathematical linguistics, as the study of 

quantitative and formal aspects of language 
phenomena (Marcus, Nicolau, Stati 1971), has 
developed simultaneously in Europe and USA 
in the late fifties.

Quantitative aspects of language were investigated 
long before the algebraic ones. 
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History
 There are records of all letters and diacritic 

symbols of Italian since the XIVth - XVIth century; 

 The Morse alphabet was inspired by the different 
statistic behavior of letters;

 In the XIX-th century frequency dictionaries were 
edited 

 The beginning of the XX-th century brings the 
first linguistically motivated studies which 
resulted in introducing the Markov models
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Overview

The main goal of this presentation is to investigate
the quantitative and formal behaviour of
Romanian syllables

The results are compared with results of similar
studies for different languages.
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Syllable and Syllabification
 Syllable: the first linguistical units learned during the

acquisition process.

 The children's first mental representation is syllabic in
nature, the phonetic representation occurs later.

 Applications: poetics, logopedy, T2S, readability, text
comprehension, speech production models, etc.
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Motivation

 The formal, quantitative or cognitive study of
syllable has various potential application in
fields such as: speech recognition, automatic
transcription of spoken language into written
language, language acquisition, etc.

 A rigorous study of the structure and
characteristics of the syllable is almost
impossible without the help provided by a
complete data base of the syllables in a given
language.
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Method (1)
We used the DOOM dictionary, which

contains Nwords = 74.276 words

We semi-automated syllabified their lexical
(not phonological) form

We extracted a series of quantitative and
descriptive results for the Romanian syllables

We investigate the behaviour of Romanian
syllables w.r.t. the laws of Chebanow,
Menzerath and Fenk.
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Method (2)
 Recently, DOOM was completed with all inflectional 

forms.  All this words were manually syllabified. 

 However, in the spoken and literary language, the 
using of words is not equal.

 We will use a corpus of 5 Romanian writers to 
investigate the behavior of syllables: Mateiu
Caragiale,  Radu Albala, Ion Iovan, Stefan Agopian, 
Eugen Balan.


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Quantitative and descriptive 
results(1)

 Total no. of type syllabals is NStype = 6496

 Total no. of token syllables is Nstoken = 273261

 Average length of a word measured in syllables is
Lwordssyl=Nstoken/Nwords=273261/74276 =3.678

 The total no. of letters is Nletters = 32702

 The average length of a word measured in letters is
Lwordslet=Nletters/Nwords=632702/74276=8.518
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Quantitative and descriptive results
 The average length of the token syllables measured 

in letters is: 
Lsyltoken=Nletters=Nstoken=632706/273261=2.315

 The average length of a type syllable measured in 
letters is:

Lsyltype=Ntletters/Nstype=24406/6496 =3.757
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Quantitative and descriptive results

 The number of consonant-vowel structures which 
appear in the syllables is 56. 

 the most frequent consonant-vowel structures are

a)for the type syllables: cvc (22%), ccvc (14%), cvcc 
(10%)

b) for the token-syllables: cv(53%), cvc (17%), v (8%), 
ccv (6%), vc (4%), cvv (2%), cvcc (2%).

 It is remarkable that these last 7 structures (i.e. 12% 
of the 56 structures) cover approximately 95% of 
the total number of the existent syllables.
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Quantitative and descriptive results

 The most frequent 50 syllables (i.e. 0,7% of the 
syllables number NStype) cover 50,03% of NStoken

 The most frequent 200 syllables cover 76% of 
NStoken

 The most frequent 400 cover 85% of NStoken 

 The most frequent 500 syllables (i.e. 7,7 % of 
NStype) cover 87% of NStoken. 

Over this number, the percentage of covering rises 
slowly.
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Quantitative and descriptive results
 The first 1200 syllables in there frequency order cover 

95% of NStoken.

 2651 syllables of NStype occur only once (hapax 
legomena).

 5060 syllables (i.e. 78%) of NStype occur less then 10 
times. These syllables represent 11960 syllables (4% of 
NStoken).
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Quantitative and descriptive results

The results are similar to results for different
languages:

 For Dutch the first 500 type syllables, ordered after
their frequency, (5% of the total number of type
syllables), cover approximately 85% of the total
number of token syllables.

 For English, the result is similar, the first 500 syllables
cover approximately 80% of the total number of the
token syllables. This results support the mental
syllabary thesis.
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How many syllables are in Romanian?
How many are used? (Qualico 2012)

Name Dict. M. Car. Agopian Albala Iovan Eminescu

#words 525.528 6562 15.225 7089 24.627 11.029

#Syl_type 2.229.021 51.560 540.777 71.555 336.124 258.761

#Syl_token 8895 1929
(21%)

2688
(30%)

1945
(21%)

3456
(38%)

2653
(29%)

%Cov50syl 51.44 53.33 59.1 58.57 50.75 53.43

%Cov200syl 78.96 80.62 84.74 82.69 78.59 78.46

%Cov500syl 88.8 92.17 94.36 93.17 90.29 91.37

#Syl=1 2716 606 400 547 677 424

#Syl<10 5478 1414 1369 1350 2018 1441
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The behaviour of Romanian syllables 
w.r.t. laws of minimum effort 

 Chebanow’s Poisson type law expresses the correlation
between the words' length (in syllables) and their
occurrence's probability.

 Denoting by F(n) the frequency of a word having n
syllables and by the average length of words
(measured in syllables), Chebanow proposed the
following law between the average i and the probability
of occurrences P(n) of the words having n syllables:
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The behaviour of Romanian syllables 
w.r.t. laws of minimum effort 

•We checked Chebanow's law on the data base of 

Romanian syllables, obtaining a strong similarity 

between the Poisson's distribution and the 

distribution of words length (in syllables):
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Chebanow's law
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Menzerath's law expresses a negative correlation
between the length of a word in syllables and the
lengths in phonemes of its constitutive syllables.
Fig. 3 shows that the law is satisfied.

Menzerath's law
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Fenk's law
 Fenk observed that the bigger the length of a 

word, measured in phonemes, the lesser the 
length of its constituent syllables, measured in 
phonemes. We checked this correlation and Fig. 4 
confirms Fenk's law:
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Fenk's laws (2)
 The bigger the average length of sentences, measured 

in syllables, the lesser the average length of syllables, 
measured in phonemes.

 There is a negative correlation between the length of 
sentences, measured in words, and the length of the 
words, measured in syllables.
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Optimal values
 Determining the optimal values of the length of 

sentences and of the words depending on the 
certain groups of readers may prove to be very 
useful in practical application. 

 By optimum value we understand the value for 
which the level of comprehensibility is the biggest 
for a class of readers. 
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Optimal values
 Knowing this value should be especially important 

for the teachers and for publishers who print text 
books.

 The main conclusion of (Elts and Mikk, 1996) is 
that, for a good understanding of a text, the length 
of sentences in the text must be around the 
average length of sentences
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Optimal values
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MULTUMESC!

26



27

Liviu P. Dinu, 

ldinu@fmi.unibuc.ro

University of Bucharest

Center for Computational Linguistics,

Faculty of Mathematics and Computer Science

nlp.unibuc.ro

mailto:ldinu@fmi.unibuc.ro


28

FORMAL APPROACHES OF 

SYLLABLES



Syllabification formal approaches

 The linguists refused to accord to the syllable the
status of structural unity of the language, as opposed
to the phoneme and the morpheme.

 As a consequence, the formal models of the syllable
failed to equal the complexity of upper units.

 Generally, based on rewriting:

 Bird and Ellison (1994): based on automata,

 Kaplan and Kay (1994): based on regular expressions,

 Karin Muller (2002): based on probabilistic CF.
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Contextual Approaches (Grammars, Cicling 2005, Fund. Inf.)

 In many languages, the syllabification of a word w 
depends on the partition of that word in three strings w = 
x1x2x3 and all three strings affect the syllabification.

 Ex: 

 Rules like ”if we have a consonant between two vowels then 
the syllabification is made before consonant”:  be$re; 
a$bi$li$ta$re can be formalized: 

xv1cv2y ⇒ xv1$cv2y

where $ is the syllabification symbol, v1 and v2 are two 
vowels and c is a consonant.
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A contextual-based approach

 Anallogy between the syllabification of the words and
the language generated by a contextual grammar.

 Formalization of the syllabification process, using an
extension of total contextual grammars.

 Sequential manner (a derivation step implies only a
cut; e.g., castravete -> castra$vete).

 Restrictions which preserve the sequentiality, but
determine a syllable at each derivation step (e.g.,
cas$travete).
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Contextual grammars. Definition
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A CONTEXTUAL APPROACH TO THE 
SYLLABLE
 Consider the Romanian alphabet RO={a, ă, â, , b, c, d, 

e, f, g, h, i, î, j, k, l, m, n, o, p, q, r, s, ş, t, ţ, u, v, w, x, y, z}
and consider a nontrivial partition RO= Vo   Co, where 
Vo={a,ă, â,, e, i, î, o, u, y}  and Co={b, c, d, f, g, h, j, k, l, 
m, n, p, q, r, s, ş, t, ţ, v, w, x, z}, i.e., Vo and Co are the 
Romanian vowels and the Romanian consonants, 
respectively.

 We will say that a word over RO is  regular if it contains 
no consecutive vowels.
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 In order to generate all the Romanian syllables which 
appear in regular words, and only them, we propose 
the grammar Gsyl = (Vsyl,Asyl, ;Csyl, φsyl), whose 
components are:

 Vsyl = RO {$}, where ”$” is a new symbol that is not in 
RO; ”$” is the syllable boundary marker

 Asyl is the set of the regular words over RO. Asyl is 
finite since the set of all words in a natural language is 
finite.
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Syl
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Vowel vs semivowel

Remark 4. Inside a graphical non regular 
word, in a sequence of 2, 3, 4 or 5 vowels it is 
difficult to distinguish between a vowel and a 
semivowel. In order to cut into syllables such a 
word we have tried to extract a set of rules 
based on the context in which the sequence 
appears. 


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V vs SV

 Thus, we notice that the same group of vowels has 
an identical behavior(regarding the syllabification 
of words which contains it) depending on certain 
letters which precede and/or succeed it (Dinu, 
1997). 

Once we have founded a set of rules which 
characterize the behavior of a sequence of vowels, 
we use it to extend the grammar Gsyl. We have 
obtained a set of rules which characterize the 
behavior of some sequences of vowels, the rest of 
them being under construction.
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 Remark 5. For a word there may be two different 
decompositions of w, w = x1x2x3 and w = y1y2y3, 
such that using direct derivation we can obtain two 
different words, w = x1x2x3 x1ux2vx3 = w1 and w = 
y1y2y3 y1uy2vy3 = w2 , with w1 w2 . 

 In other words, the syllabification  may be done 
anywhere inside the word, the only condition 
being that the cutting should be correct.
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Example
 Example 1. Consider the word lingvistica. We may 

have the follow direct derivations:

 lingvistica lin$gvistica

 lingvistica lingvisti$ca

 To avoid these situations, we shall impose that the 
cutting to be always done at the leftmost position. 
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Leftmost derivation

 For this purpose we have considered a series of 
constraints of the derivation relation defined with 
respect to a total contextual grammar, called total 
leftmost derivation.



 By using it, contexts are introduced in the leftmost 
possible place.
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Mental syllabary

 Junction with the mental syllabary model proposed by
Levelt and Indefrey (an intermediate step in speech
production is the syllabification).

 May the cost of syllabification operation be reduced?

 Mitchell’s parallel metaphor (“Machine Learning”,1997):
“many brain activities can be processed in a parallel
manner”.

 Is it possible to propose a parallel sylabification modell?
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Parallel approach via INS-DEL

 Insertion grammars: strings are inserted in a context 
(Galiukschov, 1981):

tuvw->tuxvw iff (u,x,v) is a production rule.

 Parallel derivation: we introduce a parallelism in a
double sense:

1. on one hand, we can insert more than one
string and,
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On the other hand, a context that selects an 
inserted string can interact with a context that 
selects other inserted string, such that the prefix of 
one context can be the suffix of the other.
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INS_pm (CICLING 2005, FI 2008)

 Maximum parallel derivation (INS_pM): in a derivation 
step we insert the maximum possible number of strings.

 INS_pM are incomparable but not disjoint to Context 
Free Languages, but are included in Context Sensisitve 
Languages.

 INS_pM are incomparable but not disjoint to TC and ICC 
languages.

 Efficient syllabification of words: one step.

Rules: (v,$,cv), (vc_1,$,c_2v), etc...

E.g. : lingvistica->lin$gvis$ti$ca
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Example
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Conclusion and future work
 In first part of this presentation we have presented

some quantitative observations obtained from the
analyse of the first data base of Romanian syllables.

 In the second part of the paper we have investigated 
the contextual grammars as generative models for the 
natural language. We introduced some constraints to 
the derivation relation, obtaining new contextual 
grammars. 
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Conclusion

 Using the languages generated by these grammars we 
proposed a contextual model of the syllable.

 From the cognitive point of view, a model based on 
contextual grammar seems close to the way the brain 
operates when it produces speech. 
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MULTUMESC!
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Syllabification and stress 
prediction via machine learning
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Can syllabification be learned?

 Formal approaches need almost an exhaustive  set of 
syllabification rules.

 For vowel chains we need the detection of all contexts 
and corresponding rules extraction.

 Can  we use the force of the machine learning 
methods?

 Yes, we can!
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Two Linguistics decision problems

1. Syllabification.

2. Stress prediction: given a word, to determine its 
primary stress.
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Syllable boundaries

 The task of finding syllable boundaries can be 
straightforward or challenging, depending on the 
language

 Text-to-speech applications have been shown to 
perform considerably better when syllabication, 
whether orthographic or phonetic, is employed as a 
means of breaking down the text into units bellow 
word level. 
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Syllable boundaries
 Romanian syllabication is non-trivial mainly but not 

exclusively due to its hiatus-diphthong ambiguity. 

 This phenomenon affects both phonetic and 
orthographic syllabication.

 The most challenging aspect is that of distinguishing 
between hiatus and diphthongs, as well as between the 
letter i which can surface either as a non-vocalic 
element, or as a proper vowel, affecting thus the 
syllable boundary
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Our approach

 We address the task of syllable boundary prediction 
for Romanian words (out-of-context) as a sequence 
tagging problem.
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Methodology
 Requirement: electronic available resources.

 Solved: RoMorphoDict (Barbu, LREC08),
dataset obtained from DOOM which contains
the necessary information.

 The resource relevant to our task provides a long
list of word forms along with their hyphenated
form with accent marking. An online version of
this second data resource is available for querying
at http://ilr.ro/silabisitor/.
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Syllabification. Features and 
classifiers
 Baseline: rule-based implementation.

 Classifieres:

 Linear SVM with local binary decision; features:
n-grams (optim for n=4) +labels

 CRF; features: n-grams +labels

 Labels:

 NB: mark the syllable boundary : di-a-mant-
>011000

 #NB: mark the syllable boundary + distance from
the last boundary: di-a-mant->100123
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Features. Example

We will consider n = 3, the word dinosaur and the 
split between o and s. 

 The position induces two strings, dino and saur 
but we are only interested in the window of radius 
n around the split, so we are left with ino and sau.

 Since the bag-of-n-grams features we use for the 
SVM loses the order, we consider adding a special 
marker, obtaining ino$ and $sau.

 The n-grams of length up to 3 are: i, n, o, $, in, no, 
o$, ino, no$ and the analogous for the right hand 
side

59



CRF Features
 For the CRF, the feature extraction is the same, but the 

sparse vectorized representation is replaced with an 
input like:

 1 c[-3]=i c[-2]=n c[-1]=o c[-3-2]=in c[-2-1]=no c[-3-2-
1]=ino c[1]=s c[2]=a c[3]=u c[12]=sa c[23]=au c[123]=sau

 The format above is the one accepted as input by 
CRFsuite. 
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CRF (cont)

 Because the feature names include the offset, the 
dollar marker would provide no useful 
information.

 The names could just as well be arbitrary: 
CRFsuite cannot understand that c[-2-1] means the 
bigram just before the split, but the values that a 
certain feature tends to take carry the 
discriminative information.

61



Generating training samples
 The average word in our dictionary has 9.96 characters 

and 4.24 syllables.

 This means that each word generates around 9 
training instances (possible splits), out of which we 
expect around 3 to be labeled as true, and the rest as 
false. 

 Prior to generating training instances, we split the 
words into a training and test set, each consisting of 
262,764 words.
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Training


 For each word of length n we generate n−1 instances, 
corresponding to each position between two letters 
of the word. 

 Instances are labeled as positive if a hyphen can be 
inserted there, or negative if not. 

 This tagging method is called NB labelling [2], 
because we label each split as boundary (B or 1) or no 
boundary (N or 0). 

63



Diamant
 For example, the word di-a-mant (diamond) would 

be encoded as:

d i a m a n t 

0 1 1 0 0 0

 A slightly more informative way of assigning 
labels, introduced also in [2], is to use numbered 
NB (#NB) tags: each split is labeled with the 
distance from thelast hyphen:

d i a m a n t 

1 0 0 1 2 3
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Software
 The software we use is the scikit-learn machine 

learning library for the Python scientific 
computing environment version 0.12.1 [8].

 The library provides efficient text n-gram feature 
extraction using the sparse matrix implementation 
in SciPy6. 

We use the SVM implementation by stochastic 
gradient descent. 

We also used CRFsuite version 0.12 [7] for its 
implementation of CRF inference and training.
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Syllabification. Results (TSD 2013)

 Model Hyphen_ acc. Hyphen_F1 Word acc.

 Rule 94.31% 92.1 2% 60.67%

 SVM NB 98.72% 98.24% 90.96%

 SVM #NB 98.82% 98.37% 91 .46%

 CRF NB 99.1 5% 98.83% 94.67%

 CRF #NB 99.23% 98.94% 95.25%
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Conclusion

 The rules in the rule-based system can take any 
form and they can model very complex 
interactions between features. 

 This model has the largest predictive power, but 
the rules are written by hand, therefore limiting its 
practicality and its performance. 

 At the opposite end of the spectrum is the SVM 
classifier, which applies a simple linear decision 
rule at each point within a word, looking only at its 
direct context. 
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Conclusion (2)

 This simple approach outperforms the rule-based 
system by being trained on large amounts of data. 

 The sequence tagger is more successful because it 
exploits the data-driven advantage of the SVM, 
while having more modeling power. 

 This comes at a cost in model complexity, which 
influences training and test times.
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Predicting Romanian Stress 
Assignment

(EACL 2014, LREC 2014)
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Romanian Stress Assignment

I Romanian is a highly inflected language with a rich morphology.

I Most linguists claim that Romanian stress is not predictable.

I The first author to challenge this view is Chitoran.

I Stress placement strongly depends on the morphology of the lan-
guage.

Alina Maria Ciobanu, Anca Dinu, Liviu P. Dinu Predicting Romanian Stress Assignment



Data

I RoSyllabiDict is a dataset of Romanian words.

I 525,528 inflected forms for ∼ 65,000 lemmas.

I Contains annotations for:
I Syllabication;
I Stressed vowel;
I Grammatical information/type of syllabication (in case of ambiguity).

Example: copii (children)

<form w=  "copii"  obs =  "s."  > c o  -  p í i </form>

word syllabication

part of speech stressed vowel

Alina Maria Ciobanu, Anca Dinu, Liviu P. Dinu Predicting Romanian Stress Assignment



Data

I We discard:
I Words which do not have the stressed vowel marked (3,430 words);
I Compound words having more than one stressed vowel (1,668 words);
I Ambiguous words - POS/type of syllabication (20,123 words).

I The probability distribution of the n-syllabic lemmas in RoSyllabiDict
follows a Poisson distribution.

Syllable %words

1st 5.59
2nd 18.91
3rd 39.23
4th 23.68
5th 8.52

(a) counting syllables
from left to right

Syllable %words

1st 28.16
2nd 43.93
3rd 24.14
4th 3.08
5th 0.24

(b) counting syllables
from right to left

Table: Stress placement for RoSyllabiDict.

Alina Maria Ciobanu, Anca Dinu, Liviu P. Dinu Predicting Romanian Stress Assignment



Models

I. Baseline
I We use a ”majority class” type of baseline which employs the C/V

structure of the words.

I For a word in the test set, the stress pattern which is most common
in the training set for the C/V structure of the word is assigned.

I If the C/V structure of the word in the test set is not found in the
training set, the stress is placed randomly on a vowel.

Example: copii (children)

Training set Test set
copii

  CV-CVV

copiicopii

  CV-CVV

  CV-CVV

  1) CV-CVV (283)

  2) CV-CVV (309)

  3) CV-CVV (67)

Alina Maria Ciobanu, Anca Dinu, Liviu P. Dinu Predicting Romanian Stress Assignment



Models

II. Sequential Model
I We address stress prediction as a sequence tagging problem.

I Only primary stress is accounted for, but this approach allows further
development (for secondary stress).

I The cascaded model consists of two sequential models:

1. Model for predicting syllable boundaries;
2. Model for predicting stress placement.

I The output of the first model is used as input for the second one.

I We use averaged perceptron for parameter estimation.

Alina Maria Ciobanu, Anca Dinu, Liviu P. Dinu Predicting Romanian Stress Assignment



Models

a) Syllabication
I Sequential model where each node corresponds to a position between

two characters.

I Labels: integer denoting the distance from the previous boundary.

I Features: character n-grams up to n = W in a window of radius W
around the current position.

Example: copii (children)

               c   o - p   i   i
Labels:         1      0     1    2

Features (w = 2): c[-2] = c, c[-1] = o, c[-2:-1] = co
c[1] = p, c[2] = i, c[1:2] = pi.
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Models

b) Stress Placement
I Sequential model where each node corresponds to a character.

I Labels:
I 0 - characters before the stressed vowel;
I 1 - stressed vowel;
I 2 - characters after the stressed vowel.

I Features:
I Character n-grams up to n = W in a window of radius W around the

current position;
I Features regarding the C/V structure of the word (C/V n-grams);
I Binary indicators regarding the position of the current character:

I Exactly before/after a split;

I In the 1st/2nd/3rd/4th syllable, from left to right;

I In the 1st/2nd/3rd/4th syllable, from right to left.

Alina Maria Ciobanu, Anca Dinu, Liviu P. Dinu Predicting Romanian Stress Assignment



Models

Example: copii (children)

               c   o - p   í   i
Labels:       0    0     0    1    2

Features (w = 2):

  a)    c[-2] = o, c[-1] = p,  c[0] = i, c[1] = i
      c[-2:-1] = op, c[-1:0] = pi, c[0:1] = ii.

b)     c[-2] = V, c[-1] = C,  c[0] = V, c[1] = V
      c[-2:-1] = VC, c[-1:0] = CV, c[0:1] = VV.

         c)     exactly before a split: false
exactly after a split: false 
in the 1st/2nd/3rd/4th syllable (left  right):→

false/true/false/false  
in the 1st/2nd/3rd/4th syllable (right  left):→

true/false/false/false
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Experiments

I We use averaged perceptron training from CRFsuite.

I We perform grid search to optimize the 3-fold CV F1 score of:
I Class 1 (stressed vowel), for the stress placement model;
I Class 0 (syllable boundary), for the syllabication model.

I W ∈ {2, 3, 4}, max. number of iterations ∈ {1, 5, 10, 25, 50}.

I Optimal hyperparameters: W = 4, max. number of iterations = 50.

Model Accuracy

Baseline 0.637
Cascaded (gold syllabication) 0.975
Cascaded (predicted syllabication) 0.973

Table: Accuracy for stress prediction
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Further Experiments

I We perform an in-depth analysis of the sequential model’s perfor-
mance.

I We account for several fine-grained characteristics of the words:
I Part of speech: verbs, nouns, adjectives;
I Number of syllables: 2-8, 9+;
I Number of consecutive vowels: none, at least 2.

Category Subcategory ] words
Accuracy

G P

POS
Verbs 167,193 0.995 0.991
Nouns 266,987 0.979 0.979
Adjectives 97,169 0.992 0.992

Syllables

2 syllables 34,810 0.921 0.920
3 syllables 111,330 0.944 0.941
4 syllables 154,341 0.966 0.964
5 syllables 120,288 0.981 0.969
6 syllables 54,918 0.985 0.985
7 syllables 17,852 0.981 0.989
8 syllables 5,278 0.992 0.984
9+ syllables 1,468 0.979 0.980

Vowels
With VV 134,895 0.972 0.972
Without VV 365,412 0.976 0.974

Table: Cascaded model with gold (G) and predicted (P) syllabication

Alina Maria Ciobanu, Anca Dinu, Liviu P. Dinu Predicting Romanian Stress Assignment



Conclusion

I Romanian stress is predictable.

I Syllable structure is important and helps the task of stress
prediction.

I The cascaded sequential model using gold syllabication outperforms
systems with predicted syllabication by only very little.

I Future work
I Using other features (e.g., syllable n-grams);
I Adapting the learning model to finer-grained linguistic analysis.

Alina Maria Ciobanu, Anca Dinu, Liviu P. Dinu Predicting Romanian Stress Assignment
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 Task: dându-se infinitivul unui verb nou și cunoștințe 

despre conjugarea unui set de verbe, vrem ca 

sistemul creat să poată oferi conjugarea corectă 

 Utilitate: NLG, NLP 

 Probleme:  

 multe serii de flective => multe clase paradigmatice 

 alternanțele din radical 

 

 



Domeniul verbal. Clasificări 
Clasificarea tradițională 
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Terminația de infinitiv pe conjugări 

I II III IV 

Latină ĀRE  ĒRE  ERE  ĪRE 

Română a ea e i 
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Domeniul verbal. Clasificări 
Clasificarea tradițională 

 se bazează pe vocala tematică {a, e, é, i} 

 determină 4 (sau 5) “conjugări” 

 nu reușește să surprindă aparenta multitudine de serii 

flective (aceeași conjugare prezentând mai multe serii) 

 

 

 

 

a dansa a mânca a afla a continua 

dansez 

dansezi 

dansează 

dansăm 

dansați 

dansează 

mănânc 

mănânci 

mănâncă 

mâncăm 

mâncați 

mănâncă 

aflu 

afli 

află 

aflăm 

aflați 

află 

continuu 

continui 

continuă 

continuăm 

continuați 

continuă 



Domeniul verbal. Clasificări 
Clasificări moderne: 

 Lombard (1955) 

 corpus de 667 de verbe 

 adaugă subclase pentru –ez și –esc și ajunge la 6 clase  

 Felix (1964)  

 propune 12 conjugări  

 Moisil (1960) 

 5 clase regrupate cu numeroase subclase  

 introduce metoda literelor variabile 

 Guțu-Romalo (1968) 

 corpus de peste 400 de verbe 

 identifică 38 de serii de flective pe care le restrânge pe bază de 
omonimii specifice la 10 clase conjugale 

 Barbu (2009) 

 41 de serii de flective pe un corpus de peste 7000 de verbe 
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Alternanțele din radical (apofoniile)  

 apar la verbele (parțial) neregulate  
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a purta 

eu port- 

tu porț-i 

el poart-ă 

noi purt-ăm 

voi purt-ați  

ei poart-ă  



Domeniul verbal. Alternanțe 
Alternanțele din radical (apofoniile)  

 apar la verbele (parțial) neregulate 

 duc la îngreunarea învățării morfologiei limbii române  

 
a purta 

eu port- 

tu porț-i 

el poart-ă 

noi purt-ăm 

voi purt-ați  

ei poart-ă  

vs. 

a curta 

eu curt-ez- 

tu curt-ez-i  

el curt-eaz-ă  

noi curt--ăm  

voi curt--ați  

ei curt-eaz-ă  



Domeniul verbal. Alternanțe 
Alternanțele din radical (apofoniile)  

 apar la verbele (parțial) neregulate 

 duc la îngreunarea învățării morfologiei limbii române 

 

  

 pentru verbe parțial neregulate, nu e suficient să se 

învețe “seria” de flective corespunzătoare 

 



Conjugator. Modelare Alternanțe  
Moisil (1960):  

 litere cu valori variabile 

 de ex.: purta = pu0rt0a, unde u0={u, oa, o}, t0 ={t, ț} 
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Conjugator. Modelare Alternanțe  
Moisil (1960):  

 litere cu valori variabile 

 de ex.: purta = pu0rt0a, unde u0={u, oa, o}, t0 ={t, ț} 

Dinu et al. (2011): 

 7 clase de conjugare pentru verbele care se termină în –ta la 

infinitiv  (aprox. 700 de verbe din corpusul de 7295) 

Dinu et al. (2012a):  

 30 de clase de conjugare care modelează 95% din același 

corpus 

 odată ce cunoști clasa cunoști modul in care verbul se 

conjugă (alternanțe + seria de flective)  => e suficient să 

înveți clasa verbului 



Conjugator. Modelarea Claselor  
 O clasă corespunde unei reguli de conjugare 

 O regulă de conjugare 

 = un set de 6 expresii regulate, fiecare recunoscând una 

din cele 6 forme ale unui verb conjugat la indicativ 

prezent.  

 părțile fixe ale expresiilor dintr-o regula reprezintă 

părțile verbului care nu alternează. 



Conjugator. Modelarea Claselor  
De exemplu, regula care recunoaște verbe precum 

“omoară”: 

  



Conjugator. Modelarea Claselor  
De exemplu, regula care recunoaște verbe precum 

“omoară”: 

  

 1 sg:   ^(.*)o(.*)$   omor 

 2 sg:   ^(.*)o(.*)i$   omori 

 3 sg:  ^(.*)oa(.*)ă$   omoară 

 1 pl:  ^(.*)o(.*)âm$   omorâm 

 2 pl:  ^(.*)o(.*)âţi$   omorâţi 

 3 pl:  ^(.*)oa(.*)ă$   omoară 



Conjugator. Rezultatul etichetării 
regulă dimensiune 

1 547 

2 8 

3 18 

4 5 

5 8 

6 16 

7 3330 

8 273 

9 89 

10 4 

regulă dimensiune 

11 5 

12 4 

13 106 

14 13 

15 5 

16 13 

17 6 

18 4 

19 14 

20 124 

regulă dimensiune 

21 25 

22 15 

23 7 

24 41 

25 51 

26 185 

27 1554 

28 486 

29 5 

30 27 



Conjugator. Sistemul de clasificare  

 Clasificator folosind n-grame de caractere drept 

trăsături, unde n=5 e optim, + SVM 

 Input: 'purta' => 'p', 'u', 'r', 't', 'a', 'pu', 'ur', 'rt', 'ta', 

'pur', 'urt', 'rta‘, ... 

 Output:  

 Dinu et al. (2011) eitchetă în {1 , 2, ..., 7} 

 Dinu et al. (2012a) etichetă în {1, 2, ..., 30} 

 Rezultate:  

 Dinu et al. (2011): 82.71 % accuracy, 80% F-score 

 Dinu et al. (2012a): 90.64% accuracy, 89.89% F-score 

 

 

 



Conjugator. Metodologia clasificării 



Conjugator. Interacțiune între reguli 

 Unele reguli se “suprapun”, în sensul că modelează 

aceeași serie de flective, dar alte alternanțe. 

regula 10 

(a cânta) 

regula 12 

(a deștepta) 

regula 13 

(a deșerta) 

regula 15 

(a desfăta) 

1sg 

2sg 

3sg 

1pl 

2pl 

3pl 

^(.*)t$ 

^(.*)ţi$ 

^(.*)tă$ 

^(.*)tăm$   

^(.*)taţi$  

^(.*)tă$  

^(.*)e(.*)t$  

^(.*)e(.*)ţi$  

^(.*)ea(.*)tă$  

^(.*)e(.*)tăm$  

^(.*)e(.*)taţi$  

^(.*)ea(.*)tă$  

^(.*)e(.*)t$  

^(.*)e(.*)ţi$  

^(.*)a(.*)tă$  

^(.*)e(.*)tăm$  

^(.*)e(.*)taţi$  

^(.*)a(.*)tă$  

^(.*)ăt$ 

^(.*)eţi$ 

^(.*)ată$ 

^(.*)ătăm$ 

^(.*)ătaţi$ 

^(.*)ată$ 



Conjugator. Concluzii. Viitor 
 Conjugarea verbelor în Română poate fi învățată cu 

performanță ridicată, chiar și atunci când clasele nu 

interacționeaza 

 Clasele noastre sunt robuste  un model exhaustiv ar 

presupune, cel puțin pentru setul de antrenare, multe 

clase pentru conjugări unice sau aproape unice.  

Pentru o mai bună generalizare vom avea nevoie de o 

modelare mai fină. 



Domeniul verbal. Serii sau Serie? 

 Feldstein (2004) propune o segmentare a flectivului 

verbal în 3 markeri: timp, număr, persoana. 

 Indicativ prezent 

Timp Număr Persoană 

1 sg 

2 sg 

3 sg 

1 pl 

2 pl 

3 pl 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-m-  

-t- 

-u- 

-u 

-i 

-- 

-u 

-i 
-- 

Imperfect 

Timp Număr Persoană 

-a 

-a 

-a 

-a 

-a 

-a 

-- 

-- 

-- 

-m-  

-t- 

-u- 

-u 

-i 

-- 

-u 

-i 
-- 



Domeniul verbal. Serii sau Serie? 

 Feldstein (2004) propune o segmentare a flectivului 

verbal în 3 markeri: timp, număr, persoana. 

 Șulea (2012) argumentează pentru această segmentare, 

arătând că toate seriile de flective identificate până 

acum (i.e. de Guțu-Romalo) pot fi deduse prin procese 

fonologice din seria de flective fundamentală a limbii 

române dată de această segmentare 
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.. Verbs in Romanian

.Regularity is not black and white..

......

1st 2nd 3rd

Regular sg. merg mergi merge
a merge (to walk) pl. mergem mergeți merg

Irregular sg. sunt ești este
a fi (to be) pl. suntem sunteți sunt

Partially irregular sg. port porți poartă
a purta (to wear) pl. purtăm purtați poartă
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1st 2nd 3rd

Regular sg. merg mergi merge
a merge (to walk) pl. mergem mergeți merg

Irregular sg. sunt ești este
a fi (to be) pl. suntem sunteți sunt

Partially irregular sg. port porți poartă
a purta (to wear) pl. purtăm purtați poartă
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.. Previous work

Dinu et al, RANLP 2011, EACL 2012
Hand-crafted sets of regular expressions fully describing
conjugation of most verbs
Predictive model h(infinitive) = regular expression set

.Running example..

......
sg. port porți poartă

a purta (to wear) pl. purtăm purtați poartă

.Regular expression set..

......
sg. ˆ(.*)o(.*)t$ ˆ(.*)o(.*)ți$ ˆ(.*)oa(.*)tă$
pl. ˆ(.*)u(.*)tăm$ ˆ(.*)u(.*)tați$ ˆ(.*)oa(.*)tă$

L. P. Dinu, V. Niculae, O-M. Șulea Sequence Tagging for Verb Conjugation in Romanian



.....
.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
....

.
....

.
.....

.
....

.
.....

.
....

.
....

.

.. Sequence tagging: POS tagging example

∏
ϕ(yi, xi)
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.. Sequence tagging: POS tagging example (better)

∏
ϕ1(yi, xi)ϕ2(yi, yi+1)
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.. Sequence tagging: POS tagging example (worse?)

ϕ(y1, y2, ...yn, x1, x2, ...xn)
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.. Ignored structure: interaction between classes

a cânta a deștepta a deșerta
to sing to rise to empty
^(.*)t$ ^(.*)e(.*)t$ ^(.*)e(.*)t$
^(.*)ți$ ^(.*)e(.*)ți$ ^(.*)e(.*)ți$
^(.*)tă$ ^(.*)ea(.*)tă$ ^(.*)a(.*)tă$
^(.*)tăm$ ^(.*)e(.*)tăm$ ^(.*)e(.*)tăm$
^(.*)tați$ ^(.*)e(.*)tați$ ^(.*)e(.*)tați$
^(.*)tă$ ^(.*)ea(.*)tă$ ^(.*)a(.*)tă$
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.. Conjugation as sequence tagging
.Running example..

......
sg. port porți poartă

a purta (to wear) pl. purtăm purtați poartă

.
Variable letters (Moisil)..

......

form(u0|1sg) = o
form(u0|3sg) = oa
form(u0|1pl) = u

form(t0|1sg) = t
form(t0|2sg) = ț

.Tagging example..

......
p u r t a
0 u0 0 t0 T4
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.. Models, features, training

Features: character n-grams to the left and right
size up to n
Dataset: RoMorphoDict (lemmas and forms)
labeled using the RegEx sets
16 ending patterns, 17 variable letters
4, 699 train / 2, 257 test / 339 unlabeled
Grid search, 10-fold cross validation
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.. Skip-edge CRF

Y1 Y2 Y4Y3

An extra factor template allowing the ending to influence all
positions
Inference becomes more complex
Out-of-the-box sequence tagging no longer appropriate
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.. Results

Cross-val. accuracy Test accuracy
method word char char′ word char char′

SVM 0.886 - - 0.896 - -
ML 0.924 0.987 0.913 0.914 0.985 0.900
AP 0.923 0.987 0.917 0.912 0.985 0.900
PA 0.925 0.987 0.917 0.912 0.984 0.900

AROW 0.916 0.986 0.912 0.908 0.984 0.895
SKIP - 0.984 - 0.906 0.983 0.896

Generalization on 105 of the unlabeled verbs:
many termination patterns are correctly found (30)
some alternations are found (3)

L. P. Dinu, V. Niculae, O-M. Șulea Sequence Tagging for Verb Conjugation in Romanian
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limba română 

 Domeniul nominal. Clasificarea substantivelor din 

limba română după gen 

 Concluzii 

 Bibliografie 



Domeniul Nominal. Clasă Nominală 

 Task: dându-se forma nearticulată de nominativ-

acuzativ a unui substantiv nou și cunoștințe 

referitoare la genul substantivelor în română, vrem ca 

sistemul să spună genul corect al substantivului 



Domeniul Nominal. Clasă Nominală 

 Task: dându-se forma nearticulată de nominativ-

acuzativ a unui substantiv nou și cunoștințe 

referitoare la genul substantivelor în română, vrem ca 

sistemul să spună genul corect al substantivului 

 Motivație: clasificatoarele anterioare ale 

substantivelor din Română după gen ori:  

 eșuau în a distinge neutrul de masculin (Năstase și 

Popescu, 2009) 

 nu se oboseau să îl identifice (Cucerzan și Yarowski, 

2003) 



Domeniul Nominal. 2 sau 3 clase? 

 Română:  

 în dicționar: 3 genuri (masculin, feminin, neutru) 

 pe adjective, pronume, etc.: doar 2 markeri de acord  

 

 
Singular Plural 

Masculin un băiat doi băieți 

Neutru un stilou două stilouri 

Feminin o fată două fete 



Domeniul Nominal. 2 sau 3 clase? 

 Română:  

 în dicționar: 3 genuri (masculin, feminin, neutru) 

 pe adjective, pronume, etc.: doar 2 markeri de acord 

 

 

 

 

 neutrul, în termeni de acord, urmează sistematic 

masculinul la singular și femininul la plural.  

 

 

 

 

Singular Plural 

Masculin un băiat doi băieți 

Neutru un stilou două stilouri 

Feminin o fată două fete 



Domeniul Nominal. 2 sau 3 clase? 

 Sistemul tradițional, trinitar (Graur et al., 1966) 

 3 genuri marcate în lexicon/ clase nominale 

 modul în care substantivele sunt distribuite într-una din clase și 

legătura dintre ele și sistemul acordului sunt apoi schițate de 

Corbett (1991), Farkas (1990), însă Bateman și Polinsky (2010) 

argumentează împotriva abordării lor 

 

 

 

 



Domeniul Nominal. 2 sau 3 clase? 

 Sistemul tradițional, trinitar (Graur et al., 1966) 

 3 genuri marcate în lexicon/ clase nominale 

 modul în care substantivele sunt distribuite într-una din clase și 

legătura dintre ele și sistemul acordului sunt apoi schițate de 

Corbett (1991), Farkas (1990), însă Bateman și Polinsky (2010) 

argumentează împotriva abordării lor 

 Sistemul modern, dual (Bateman și Polinsky, 2010) 

 2 clase nominale (nemarcate în lexicon) la singular (m/f) și alte 2 

clase la plural (tot m/f); 

 asignarea genului la singular și plural se face separat și bazat pe 

trăsături semantice (gen natural) și fonologice. 

 neutrul presupune asignare diferită la singular și plural  

 

 
 

 



Clasificatori anteriori 
 Nastase și Popescu (2009)  

 presupun sistemul trinitar 

 folosesc doar formele de singular, nominativ-acuzativ, neart.  

 au probleme (firești) în a distinge neutrul de masculin (la 

singular) 

 Cucerzan și Yarovsky (2003) 

 presupun sistemul dual 

 se uită doar la singular, dar folosesc informații din context (i.e. 

articolul, acordul cu adjective, pronume, etc.) 

 nu diferențiază între neutru și masculin 

 

 
 

 

 



Clasificatorul nostru 
Dinu et al. (2012b)  

 presupun și verifică sistemul modern, dual 

 împart problema clasificării neutrului în două probleme 

de clasificare binară (singular / plural). 

 folosesc ca input atât formele (N-A, neart.) de singular 

cât și de plural 

 pentru a verifica ipoteza duală, testează dacă neutrul se 

clasifică drept masculin la singular și feminin la plural 

folosind ca trăsături n-grame de caractere (trăsături 

fonologice). 

 

 
 

 



Antrenarea modelelor 

•Antrenare pe masculine și 

feminine, la singular și plural 

• Testare pe neutre, la singular și 

plural 
 

 

 

 

 

 

 

 

 

 

 



Domeniul Nominal. Rezultate 
 Parametrii aleși pentru sistem: 5-grame, fără binarizare și 

adaugă sufixul '$'. 

 Scorurile estimate prin validare încrucișată:  

 singular: accuracy 99.59%, precision 99.63%, recall 99.80%, 
F1 99.71 %  

 plural: accuracy 95.98%, precision 97.32%, recall 97.05%, F1 
97.1 8% 

 Evaluarea neutrelor:  

 performanță 99.14% la singular și 92.30% la plural.  

 la plural e mai scăzută din cauza substantivelor compuse și 
terminațiilor derutante: 

    balaur/ balaur-i vs. bord/ bord-uri. 
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limba română după gen 

 Concluzii 

 Bibliografie 



Concluzii 
 Problemele prezentate se modelează foarte bine ca 

probleme de clasificare, folosind n-grame de caractere 

drept trăsături (unde n=5 e optim). 

 Analiza teoretică a problemei lingvistice este esențială 

și poate afecta eficiența clasificatorului. 

 În ambele cazuri, adăugând sufixul artificial ‘$’ pentru 

a oferi greutate mai mare terminațiilor duce la un 

rezultat mai bun. 

 SVM-urile se pretează bine pe aceste task-uri 
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Rank distance, rank aggregation 
and applications
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Rank Distance. Motivation 

 Often, the main information of a message is placed in its
first part.

 Given a set of messages (usually rankings), one faces two
problems: how to compute their distance and how to
aggregate them?
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Rank Distance
 To measure the distance between two rankings,

we proceed as follows:

 assign a position (in Borda order) to each letter
;

 scan (top-down) both rankings, and for each
letter from the first ranking count the number
of elements between its position in the first
ranking and its position in the second ranking;

 for unmatched letters, add their position;

 finally, sum all these scores and obtain the
rank distance.
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Extension to strings.Efficient computation 

 Given two strings x and y, the RD is defined through 
the following algorithmic process: 

 both strings are scanned (from left to right) and for 
each character a in the first string, and for each of 
its k-th occurrence in x, the algorithm sums up the 
absolute difference between the position of its k-th 
occurrences in x and y. 
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Extension to strings

 for each of the non-matched occurrences of a in 
one of the two strings, the algorithm adds to the 
sum the arithmetic mean of |x| and |y|.

 RD=The total sum computed by this algorithm

6



Mathematical results (selection)
 P1. (collinearity problem) Given two strings f and g

over U, how many strings h over U are there, such 
that 

D(f, g) + D (g, h) = D(f, h) (or D(f, h) + D (h, g) = D(f,
g))?

 P2. (diameter over binary strings). Let Tm,n be the 
set of all words over V with m 0’s and n 1’s. The 
diameter of the set Tm,n is given by the computing of 
RD between strings p01 = 00...011...1 and p10= 
11...100...0.
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max RD on strings

 Theorem (max RD on binary strings). Let u in Tm,n

be a string. D (u,v) <=max {D (u,p01), D (u, p10)}, for 
any string v from Tm,n.
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Open problems

 Diameter over arbitrary strings

 Cardinality of ball (sphere) of center u and radius 
r: given a string u, how many strings are at a given 
rank distance r of it? 

9



Rank aggregation(s)

1. The rank distance aggregation (RDA, Median
string): given n rankings (voters), RDA is that
ranking (voter ) whose sum of the distances (via
rank distance) to all rankings (voters) is
minimum.

2. Closest string problem: given a set of strings, the
goal is to find a string with the property that it is
the centre of a ball with minimum radius such
that all the other strings are inside the ball.

 ... 10

 How do we aggregate the voters?



Computational Properties (TCS 2006, CPM 2012)

 Median string: NP hard problem for edit and Kendal
distance.

 Closest string: non-polynomial solution for Hamming,
Levenshtein, or Kendall distances.

 Rank distance approaches:

 MSRD: a polinomyal time solution

 CSRD: no polynomial solution
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Rationallity (Arrow’s) properties

1. Pareto optimality: if all 
voters prefer a to b in all 
initial rankings, there is
an aggregation in RDA 
in which a is preferred 
to b.

2. RDA does not satisfy 
the independence 
condition.
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Rationallity (Arrow’s) properties

1. RDA is “reasonable”: if we apply RDA to rankings 
with two elements, the result is the same as when 
the majority rule is applied.

2. RDA is stable, free order, loyal and invertible.

13



Loose stability 
(A last voter, voting manipulation)

We are in the following situation:

 we have many voters, and we are interested in their
aggregation. We compute RDA, and we obtain a set
of aggregation.

What if a last minute voter comes and wants to vote?

 Intuitively, if there are many voters, if we add only
one more voter, the aggregating result must be
more or less the same.
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Manipulation

Our results show that, if the voter is a special one,
the result is completely changed:

 if we add to the initial voters a voter which is in
their aggregation set (RDA), and we aggregate
again, the result is formed only from this
voter. In other words, it eliminates all the
competitors.
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Open problems
 RDA produces a set of aggregations. How many are

there? Which is the best one?

 An efficient heuristic for determining the closest 
string.

 How many closest strings are between two strings? 
(a closed formula).

 Given two strings x and y, at least a closest string is 
on the [x, y] segment (proved at least once!).

 Relation between #RDA and Genocchi number 
(thanks to C. Zara).

 ...
16



Rank Categorization

 RDA produces a set of rankings.

 If we are interested only in the winner, not by the
full preferences, we need one more step: we have to
transform the RDA of the voters in a categorization.

 The procedure is simple: we actually apply the voting
methods on voters’ aggregations (RDA);

 in other words, we count who is on the first
position most of the times and we choose it as the
winner.

17



RDC Properties: Is half enough?

 If all voters prefer A on the first position, then A will
be the winner.

 If half plus one from the voters vote for the
candidate A to be on the first position, then this
candidate will also be the winner.

 However, if “only” half of voters vote the candidate
A to be on the first position, then this candidate is
not necessarily the winner (he can lose).

18



Applications
 Handwritten digit classification (Fund. Inf., 2008)

 Better than other multicriterial categorization
methods applied on a Dutch database (the best
rate 98.2).

 Text categorization (CiCling 2010)

 Good behaviour on Reuters database, on instances
with more than 20 classes.
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Applications
 Clustering methods based on rank distance

(Iconip 2012):

 K-Means-type algorithms based on rank
distance.

Hierarchical clustering based on rank distance.

Others: meta-search engine aggregation,
collocation detection.

20



Applications in Bioinformatics: DNA similarity 

(PlosOne”12&’’14, ICONIP12, SYNASC12)

21



Phylogenetic (clustering) analysis 
String Alignment analysis

22



Experiment: Handwritten digit 
classification
We make a comparative study regarding the 

behavior of six combining schema on the same 
input data set.

 The input dataset consists of handwritten 
numerals (000,...,090) extracted from a collection 
of Dutch utility maps. 

We compare the RDC results with reported results 
obtained by other five combining methods.
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Experiment
 The experiments are done on a data set which 

consists of six different feature sets for the same set 
of objects.

 The six feature sets are:

 Fourier: 76 Fourier coefficients of the character 
shapes.

 Profiles: 216 profile correlations. 

 KL-coef: 64 Karhunen-Love coefficients. 

 Pixel: 240 pixel averages in 2 x 3 windows. 

 Zernike: 47 Zernike moments. 

Morph: 6 morphological features.
24



Details

 The 12 individual classifiers for a single feature set 
were combined using the five combining rules.

 On each combining rule line (R1,...,R5), its success 
rate (in percent) is given for each feature from the 
corresponding column. 

We combined the 12 classifiers for each feature 
using the RDC method. 
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Details (2)

 The results are shown in the table 1, last line.

 For each feature set, the best result over the 
classifiers is printed in bold; 

 The underlined results indicate that combination 
result is better than the performance of 
individualclassifiersforthisfeatureset. 
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12 classifiers (c1,...,c12) and 6 combining 
rules
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RDC =the best
 TheRDC method gives better results in 5 out of 6

cases than all the individual classifiers (which is 
the best performance within the 6 methods).

 Out of all other methods RDC gives the best 
results in 4 out of 6 cases

 Combining rules are applied on the 6 features for a 
single classification rule. 

 In table 2 we present the success rate for each 
combining rule, including the RDC method in the 
last column
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Analyse
 For each of the 12 classifiers, the underlined results 

indicate that this combination result is better than 
each of the six individual results of the current 
classifier.

 The RDC method gives better results in 9 out of 12 
cases than all the individual classifiers (only 1-NN 
method gives 10 of 12). 

 In table 3 we present the average success rate of 
each of the 12 classifiers over the six features. 
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Analyse
We can see that the classifiers c9 and c10 have 

average success rate around 50%, much less than 
all other classifiers . 

 If we have ignored these 2 classifiers, the RDC 
method would have overcome the 1-NN method, 
becoming first in all competition between the 
combining methods. 
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The winner is... RDC
We applied all 12 classifiers to all six features and 

obtained for each document a multiset of 72 
rankings. 

We combined these rankings by using RDC 
combining schema and compare the results to real 
results. 

 The success rate of RDC is in this case 98.2%. This 
is the best result of our experiment.
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Conclusion
Our analysis reveals that the classification based 

on RDC combining schema gives one of the best 
possible results. 

We have to say that RDC can be computed in a 
polynomial time and it is based on a nontrivial, 
linear-time metric. 

 This facts, corroborated with the remark that RDC 
is a fixed combiner, make RDC a serious candidate 
in the very competitive field of multi-agent 
classification.
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Motivation
Why another fixed combining rule?

Benefits of using more than one classifier:
learning more complex decision boundaries (e.g. more than
circles or lines)
theoretical advantage shown for some combining methods:
boosting
many classifiers already implemented, showing different
accuracies

Ensembles of classifiers are a well researched Machine
Learning topic. However, . . .

achieving the theoretical advantage of trained combining rules
proves to be a very difficult task
fixed combining rules are widely used as the final decision
maker, even within other combination schemes (bagging and
boosting)

So, a better fixed combining rule can’t hurt!. . .
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What’s available out there. . .

Many feature extraction techniques do exist for nearly all
applications

Many classifiers readily available, so which is the “best”
feature–classifier pair?

Options:

Choose wisely (but don’t optimize for one dataset)
Use more than one pair, thus combine different features with
different classifiers.

It all boils down to what’s good enough for you! Would you trust
your bank account to a 99% accurate fingerprint classifier. . .
P.S: We can produce a fake fingerprint from your cup of

coffee this morning. How about now?
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New to our Approach
How much do you trust your models?

Models of your data (i.e. classifier decision boundaries) are
intrinsically biased (lines, circles, etc)

. . . and many times are simply wrong

In a classical setting like text classification they associate
probabilities or confidences to the set of possible topics
(classes). How much should you “trust” these values?

NEW: We build rankings out of the classifier outputs and
discard the values.

NEW: We use these rankings to assign documents to one (or
a few) of the topics

How? Bare with me!
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Raking

Rankings express a subjective order of preference; they are
very natural to us (competitions, public opinion surveys).

The underlying subjective criteria for creating rankings can be
very different, and not even applicable to all the contenders.

Usually they account for a small number of the rank-able
objects.

A longer ranking usually suggests a more thorough criterion.

Formally: for a set of document topics U = {1, 2, ...,#U}, a
ranking over U is an ordered list: τ = (x1 > x2 > ... > xd),
where xi ∈ U for all 1 ≤ i ≤ d , xi 6= xj for all 1 ≤ i 6= j ≤ d ,
and > a strict ordering relation on the set {x1, x2, ..., xd}.
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Order of a topic in a ranking

Context:

U = {1, 2, ...,#U} (document topics)

σ = (x1 > x2 > ... > xn), xi ∈ U (one opinion, e.g. one
classifier output)

Order of topic x in ranking σ is:

ord(σ, x) = |length(σ)− σ(x)| = |n − σ(x)|

E.g. for σ = (x1 > x2 > x3), σ(x2) = 2 and
ord(σ, x2) = |3− 2| = 1

By convention, if x ∈ U \ σ, we have ord(σ, x) = 0.
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Rank Distance

Then: For two rankings σ and τ over the same set of topics U , we
define the Rank Distance between them as:

∆(σ, τ) =
∑

x∈σ∪τ

|ord(σ, x)− ord(τ, x)|.

Remember:
ord(σ, x) = |length(σ)− σ(x)|

Theorem

∆ is a distance function.
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Rank Distance

Then: For two rankings σ and τ over the same set of topics U , we
define the Rank Distance between them as:

∆(σ, τ) =
∑

x∈σ∪τ

|ord(σ, x)− ord(τ, x)|.

Rationale:

Ranking differences on the highly ranked objects should have a
larger impact than disagreements on the lower ranked objects

Longer rankings should be justified (tricky, with the benefit of
extra expressibility)

Computing is straight-forward and linear in the number of
objects of the two rankings (usually much lower than the total
number of universe objects)
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Rank Distance Aggregation
How to be fair to all the rankings?

From the k classifiers outputs we compute a multiset of
rankings:

T = {τ1, τ2, ..., τk}

E.g. in text classification we used 4 classifiers, which produced
4 rankings per evaluated document.

The rank-distance from a ranking σ to multiset T is:

∆(σ, T ) =
∑
τ∈T

∆(σ, τ).
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Rank Distance Aggregation
How to be fair to all the rankings?

To aggregate T into a single ranking:

Look for a ranking σ of minimal rank-distance to T
i.e. minimize the sum:

∆(σ, T ) =
∑
τ∈T

∆(σ, τ).

We call such a σ a Rank Distance Aggregation of T , and we
call the set of such rankings: agr(T )

Computing agr(T ) is polynomial in the number of objects
that appear at least once in the multiset T , with complexity
O((2x + 2)n4), where x is the size of agr(T ) and n is usually
very small (say less than 10)
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Rank Distance Categorization (RDC)

Let:

U = {1, 2, ...,#U} be a set of document topics

T = {τ1, τ2, ..., τk} be a multiset of rankings computed from
classifier outputs for a certain document

agr(T ) be the set of all rankings with minimal distance to T
Then:

The topic predicted by the RDC method for that particular
document is the one that occupies most frequently the first
position in the rankings of agr(T )

RDC is Voting on agr(T )
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Categorization Task

We used the rainbow text classification tool, which is available
for most Linux systems (e.g. in default repositories of Ubuntu)

Corpus: a collection of 20,000 texts covering 20 topics

Classifiers: Naive Bayes, TF-IDF/Rocchio, Probabilistic
Indexing, K-Nearest Neighbor

Since the number of training documents greatly influences the
accuracy of most classifiers, we chose 7 different training
scenarios: N random documents, per class, where:

N ∈ {2, 5, 10, 20, 50, 100, 500}

Testing: 500 new documents, per class
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Results: at most 10 training docs per class

Classifiers 2pc 5pc 10pc

TFIDF 79.23 70.46 93.10
PRIND 42.56 56.76 71.30
KNN 71.90 74.86 75.36
NBAYES 75.23 76.26 92.53

Voting 75.50 77.96 91.69
Product 75.50 77.00 92.73
Sum 74.90 81.09 92.66
Max 75.06 80.79 92.56
Min 74.13 72.80 85.60
Median 76.96 76.13 92.76
Voting on RDA 76.23 77.06 91.86

Precision (%). Underlined is the maximum, bold is everything
closer than 0.50% to the maximum.
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Results: 20 training docs per class and above

Classifiers 20pc 50pc 100pc 500pc

TFIDF 92.83 91.53 91.63 91.76
PRIND 77.19 82.86 83.86 86.86
KNN 81.83 89.16 89.83 88.96
NBAYES 91.63 91.19 91.03 92.00
Voting 92.00 92.09 91.93 92.16
Product 92.26 92.06 91.56 91.40
Sum 92.46 91.66 91.33 92.30
Max 91.36 91.40 91.00 91.96
Min 86.36 88.93 90.60 91.70
Median 91.96 91.39 90.96 92.23
Voting on RDA 92.66 92.56 92.16 92.40

Precision (%). Underlined is the maximum, bold is everything
closer than 0.50% to the maximum.
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Conclusions

If the number of training documents is relatively small, the
base classifiers produce unreliable results (as expected), and
aggregations have lower precision than some of the classifiers.
However,. . .

If the training set is sufficiently large, aggregations usually do
better than individual classifiers, and at least as well as the
local best (which may be different for different classes)
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Summary

This article presents a series of experiments with text
categorization methods, combined by the common, fixed,
classifier fusion rules and by the new Voting on the
Rank-Distance Aggregation set.

We use the rainbow document classification tool to output
the results of 4 different text categorization methods, and we
aggregate by 6 established fixed fusion rules.

We compare these results with Voting on the Rank Distance
Aggregation set, which demonstrates robust performance.
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Introduction
 Cognates are words in different languages having 

the same etymology and a common ancestor.

 Investigating pairs of cognates is very useful 

 in historical and comparative linguistics, 

 in the study of language relatedness (Ng et al., 
2010), phylogenetic inference (Atkinson et al., 
2005) 

 in identifying how and to what extent languages 
change over time.
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Introduction (2)
 In other several research areas, such as language 

acquisition, bilingual word recognition (Dijkstra et 
al., 2012), corpus linguistics (Simard et al., 1992), 
cross-lingual information retrieval (Buckley et al., 
1997) and machine translation (Kondrak et al., 
2003), the condition of common etymology is 
usually not essential and cognates are regarded as 
words with high cross-lingual meaning and 
orthographic or phonetic similarity.
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An Assessment of String 
Similarity Methods for Cognate 

Identification (Qualico 2012)
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Overview

The main goal of this part is to investigate

and compare the performance of several

manually-designed procedures (the

Manhattan, Jaro,Jaro/Winkler distances and

the ALINE phonetic aligner) and data-driven

models (Pair Hidden Markov Model, Dynamic

Bayesian Networks, and a measuring string

similarity system, inspired by biological

sequence alignment) in the task of cognate

identification.
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Motivation (1)

 The study of language relatedness has been

historically based on the detection of strict or

genetic cognates (words deriving “vertically”

from the same predecessor)

 Cognate identification has been successfully

applied to a multitude of areas of

computational linguistics and NLP:

dialectology, proto-language reconstruction,

phylogenetic inference, machine translation,

semantic word clustering, lexical induction
7



Motivation (2)

 Approaches to the cognate identification

problem include static procedures and

learning systems

 Our results in comparing the two suggest that

learning algorithms outperform static

procedures and that ortographic learning

methods may outperform static learning

methods, accurately detecting traces of

sound change left in the ortography.
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Static methods (1)

I. Manhattan distance - metric that calculates the 

distance between two points in an n-dimensional 

space:

if p=(p1,p2,...,pn) and q=(q1,q2,...,qn), then 

M(p,q)=Ʃ |pi-qi|

We have computed this distance on the vectorial 

representation of each word (written in Roman 

alphabet) through the computation of the 

ocurrences of each letter (0 = no ocurrence)

9



Static methods (2)

II.The Jaro and Jaro/Winkler distances calculate

the similarity between short strings.Given 2

strings, S1=(a1,...,am) and S2=(b1,...,b2), c=the no.

of common characters between them, and t=the

no. of char. transposition, then :

JD(S1,S2)=1/3 * (c/m + c/n +(c-t)/c)

and

JWD(S1,S2)=JD(S1,S2)+L*P*(1-JD(S1,S2))
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Static methods (3)

where L is the length of the longest common 

prefix of S1 and S2, L<5, and P=0.1 is a 

scaling factor

III. ALINE is a manually-designed algorithm 

developed by Kondrak for sequence 

alignment. It works on phonetic segments 

and calculates their similarity through local 

alignment. Twelve phonetic features are 

considered and weighted according to their 

manually-established sallience. 11



Data-driven models (1)

I.Pair Hidden Markov Model (PHMM)

 A suite of PHMM's utilising alignment and log-

odds Viterbi algorithms to calculate word-pair 

similarity

 Training dataset of 120,000 word pairs from the 

''Comparative Indo-European corpus by Dyen et 

al.''

 Test dataset of 10 language pairs  extracted from 

the 200-word Swadesh lists
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II.Dynamic Bayesian Network (DBN)

 Training dataset of 180,000 word pairs from the 

''Comparative Indo-European... ''

 The authors set parameters for their model by 

building a development dataset of 3 language 

pairs representing distant (Italian-Croatian), 

medium (Spanish-Romanian) and close 

(Polish-Russian) relatedness.

Data-driven models (2)
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III. A string similarity measuring system

 Training dataset of 650 word pairs from the 

''Comparative...'' classified as certain 

cognates. 

 Pairwise global alignment applied to cognate 

pairs, with the aid of a novel linguistic-inspired 

substitution matrix.

 Increasingly complex scoring matrices infered 

by several learning techniques:  

Data-driven models (3)
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Absolute Frequency Ratio, Pointwise Mutual

Information, PAM-like matrices

 The produced substitution matrices were used to

measure word similarity, employing global and

local alignment algorithms and a novel family of

parametrised string similarity measures

 The test dataset was the same as the one

utilised by PHMM

Data-driven models (4)
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Experimental design 

 Training dataset extracted from the ''Comparative

Indoeuropean Database by Dyen'' – 84 Swadesh

lists, each containing 200 universal words(no

diacritics,Roman alphabet,clustered by meaning

and cognateness)

 Test dataset: Swadesh lists for English, German,

French, Latin and Albanian,(ortographic format

with phonetic transcription) + cognateness info.

 Evaluation methodology: the 11-point interpolated

average precision method

16



Experimental results 

•We compared the results achieved by the manually-designed 

procedures and the  data-driven models.  
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 The table above shows an asessment in cognate

identification of the comparable ortographic and

phonetic methods in terms of 11-point interpolated

average precision over 10 language pairs.

 The baseline we used was the edit-distance with

unitary costs normalised by the length of the longer

string (NEDIT)

Experimental results

18



Experimental results

 We see that the results obtained for ALINE,
PHMM, DBN and PAM-like are as reported in the
literature.

 PAM-like shows the best results achieved with the
first training dataset, of about 650 cognate pairs

19



 The Manhattan distance produces a negative 

outcome, showing a performance lower than 

NEDIT

 The Jaro and Jaro/Winkler distances generate 

results only slightly higher than NEDIT 

 The Absolute Frequency Ratio (AFR) performs 

a little better and ALINE

Experimental results
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Experimental results

 The Pairwise Mutual Information (PMI) reaches 
good results, comparable to those by the best 
PHMM and DBN

 The PAM-like method achieves the highest 
accuracy in cognate identification, with an average 
precision approx. 5% higher than PHMM,DBN 
and PMI, 18% higher than ALINE, and 28% higher 
than NEDIT.
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Conclusion and future work

 Results suggest that the performance of the

PAM-like system is more stable than the other

methods analysed.

 Even though in cognate identification, a phonetic

approach is supposed to be more accurate than

an ortographic one, recent studies have shown

the contrary.
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Conclusion and future work

 Our investigation has confirmed this tendency,
suggesting that phonetic changes can leave
enough traces in the word ortography, to be used
by ortographic learning systems.

 Our future plans include the investigation of other
learning techniques developed for biological
sequence analysis and their application to cognate
identification. We are particularly interested in
training BLOSUM-like matrices
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Cognate detection (ACL 2014, 
LREC 2014, RANLP 2013)
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Cognate detection (ACL 2014, LREC 2014, RANLP 2013)

 Cognates are words in different languages having the
same etymology and a common ancestor.

 We identify cognates using electronic dictionaries.

 We build a dataset of multilingual cognates for the
Romanian lexicon.
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Romanian cognate
 We focus on the Romanian language and first we 

investigate its cognate pairs with two other Romance 
languages, French and Italian. 

 We believe this comparison is interesting for the 
following reason: 

 the two related languages differ significantly with 
respect to their orthographic depth: the mapping rules 
between graphemes and phonemes are more complex 
for French, which has a deep orthography, than for 
Italian, which has a highly phonemic orthography. 

26



Ethymologies
 We identify the etymologies and etymons of the 

Romanian words using dexonline 1 machine-readable 
dictionary, which is an aggregator for over 30 
Romanian dictionaries. 

 By parsing its defi- nitions, we are able to 
automatically extract information regarding words’ 
etymologies and etymons.

27



Method

 After determining the etymologies of the 
Romanian words, we translate in French all words 
without French etymology and in Italian all words 
without Italian etymology using Google Translate.

We consider cognate candidates pairs formed of 
Romanian words and their translations. 

28



 Using French and Italian dictionaries, we extract 
etymology-related information for French and 
Italian words. 

 To identify cognates we compare, for each pair of 
candidates, the etymologies and the etymons. If 
they match, we identify the words as being 
cognates

29



Algorithm and data

 We use the lexicon
provided by DexOnline
(http://dexonline.ro).

 ~ 137,000 lexemes

 We identify cognate pairs
between Romanian and
five other languages:

 French, Italian, Spanish,
Portuguese, Turkish.
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The Corpus
 We apply our method on a high-quality Romanian 

corpus comprising of the transcription of the 
parliamentary debates held between 1996 and 2007 in 
the Romanian Parliament, recently proposed in 
(Grozea, 2012)

 For preprocessing this corpus, we removed words that 
are irrelevant for our investigation, such as dates and 
numbers and all the transcribers’ descriptions of the 
parliamentary sessions (such as “The session began at 
8:40.”), as we focus on the spoken language. 
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Processing
We performed word segmentation, using 

whitespace and punctuation marks as delimiters, 
we lower-cased all words and we removed stop 
words, using a list of Romanian stop words 
provided by Apache Lucene 5 text search engine 
library . 

We lemmatized the words using dexonline, which 
provides information regarding the words’ 
inflected forms and enables us to correctly identify 
lemmas where no part-of-speech or semantic 
ambiguities arise (in this case we consider the first 
occurred lemma).
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Orthographic Approaches
 We chose some standard distances, another distance 

that was successfully employed for record linkage and 
also an original metric in the field of cognates 
identification, rank distance.

 • Levenshtein distance

 • Rank distance

 Longest common subsequence ratio

 Xdice

 Jaro distance

33



Evaluation and Results Analysis
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Evaluation and Results Analysis
 We excerpt from the corpus, for each of the two 

languages, random samples of 5,000 words which have 
a cognate pair in the related language and 5,000 which 
do not have such matching pair. 

 We match these latter words with their translations. 

 Thus, we obtain a sample of 10,000 pairs of words for 
Romanian and Italian, 5,000 pairs of cognates and 
5,000 pairs of non-cognates.


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Evaluation

 We obtain a similar set for Romanian and French. 

 For each dataset we also consider the version without 
diacritics.

 We compute the lexical distances for each pair of 
words, setting various thresholds for identifying 
cognates.
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Results for Romanian 

 lexicon:

39

Lang #words #etymons #cognates Et.
det.
acc.

Fr. 53,347 52,868 479 .966

It. 13,377 9,874 3,503 .980

Sp. 7,780 2,181 5,599 .982

Pt. 10,972 1,318 9,654 .998

Tr. 4,608 2,307 2,301 .996



Results for Romanian 
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Evaluation
 According to the outcome of our investigation, the 

edit distance identifies Romanian-French and 
Romanian-Italian cognates with the highest degree 
of accuracy, reaching its maximum for a threshold 
value of 0.5 (and 0.6 for French, when diacritics 
are accounted for), followed closely by JaroWinkler 
distance and the longest common subsequence 
ratio.
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Cognates detection &  
discrimination, word production

(ACL 2014, 2015)
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Introduction
Words undergo various changes when entering 

new languages. 

We assume that rules for adapting foreign words to 
the orthographic system of the target languages 
might not have been very well defined in their 
period of early development, but they may have 
since become complex and probably language-
specific. 
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Our intuition
We employed orthographic alignment for 

identifying pairs of cognates, not only to compute 
similarity scores, as was previously done, but to 
use aligned subsequences as features for machine 
learning algorithms. 

Our intuition is that inferring language-specific 
rules for aligning words will lead to better 
performance in the task of cognate identification.
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Pairwise similarity
 Word-cognate vs. word-etymon overall pairwise

similarity:

47

Language Word-etymon pairs
w/ diacritics w/o diacritics

Cognate pairs
w/ diacritics w/o diacritics

French .72 .77 .62 .69

Italian .73 .76 .75 .77

Spanish .53 .57 .76 .79

Portuguese .49 .53 .77 .81

Turkish .63 .69 .74 .76



The orthographic approach

 Over time, sound changes leave traces in the
orthography of the words (Delmestri and Cristianini,
2010).

 Orthographic changes undergone by words when
entering new languages follow specific patterns.

 We use the Needleman-Wunsch algorithm for
sequence alignment, used in computational biology
(Needleman and Wunsch, 1970).

48



Feature extraction
 Features are n-grams of characters around mismatches

in the aligned words, n in {1, 2, 3}.

 For a given n, using all i-grams, where i {1, 2, …, n}
leads to better results.

 Word boundaries are marked by $ symbols

49

Alignment:
(Needleman-Wunsch)

e x h a u s t i v –

e s – a u s t i v o

Features:

x>s    ex>es xh>s–

h>– xh>s– ha>–a

–>o    v–>vo –$>o$



The alignment
 There are three types of mismatches, corresponding to 

the following operations: insertion, deletion and 
substitution. 

 For example, for the Romanian word exhaustiv and its 
Italian cognate pair esaustivo, the alignment is as 
follows:

e x h a u s t i v –

e s - a u s t i v o
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Types of features

We experiment with two types of features: 

 n-grams around gaps, i.e., we account only for insertions 
and deletions; 

 n-grams around any type of mismatch, i.e., we account 
for all three types of mismatches.

 The second alternative leads to better performance, 
so we account for all mismatches. As for the length 
of the grams, we experiment with n ∈ {1, 2, 3}
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Example

 In order to provide information regarding the 
position of the features, we mark the beginning 
and the end of the word with a $ symbol.

 Thus, for the above-mentioned pair of cognates, 
(exhaustiv, esaustivo), we extract the following 
features when n = 2:

 x>s ex>es xh>s

 h>- xh>s- ha>-a

 ->o v->vo -$>o$
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Algorithms and setup

 Naïve Bayes and Support Vector Machines (SVM).

 Training/test sets - 3:1 ratio.

 Grid search & 3-fold CV over the training set to
optimize hyperparameters for SVM.

 The system was implemented using the Weka machine
learning toolkit (Hall et al, 2009).
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Experiment & Data
 We apply our method on an automatically extracted 

dataset of cognates for four pairs of languages: 
Romanian-French, Romanian-Italian, Romanian-
Spanish and Romanian-Portuguese.

 We discard pairs of words for which the forms across 
languages are identical (i.e., the Romanian word 
matrice and its Italian cognate pair matrice, having the 
same form), because these pairs do not provide any 
orthographic changes to be learned. 
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Rlevant cues
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Experiments and results
 We used the dataset of cognates extracted from 

DexOnline for the Romance languages.

 400 pairs of cognates and 400 pairs of non-cognates 
for each pair of languages. 

56

Language Naïve Bayes

Precision Recall       Accuracy    n-grams

SVM

Precision Recall      Accuracy    n-grams

Italian . 727 .930 .790 1 .760 92.0 .815 1

French .813 .910 .820 2 .849 .890 .870 2

Spanish .793 .920 .840 1 .854 .880 .865 2

Portuguese .677 .880 .730 2 .709 .780 .730 2
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Result Analyse
 The best results are obtained for French and Spanish, 

while the lowest accuracy is obtained for Portuguese. 

 The SVM produces better results for all languages 
except Portuguese, where the accuracy is equal.

 For Portuguese, both Naive Bayes and SVM 
misclassify more non-cognates as cognates than 
viceversa. A possible explanation might be the 
occurrence, in the dataset, of more remotely related 
words, which are not labeled as cognates. 
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Final remarks and conclusion

 We investigate the performance of the method we 
propose in comparison to previous approaches for 
automatic detection of cognate pairs based on 
orthographic similarity.

 Our method performs better than the orthographic 
metrics considered as individual features.

 Out of the four similarity metrics, SpSim obtains, 
overall, the best performance. These results support 
the relevance of accounting for orthographic cues in 
cognate identification.
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Automatic Discrimination 
between Cognates and 
Borrowings (ACL 2015)
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Automatic Discrimination between 
Cognates and Borrowings(ACL 2015)

 Identifying the type of relationship between words
provides a deeper insight into the history of a
language and allows a better characterization of
language relatedness.

 Natural languages are living eco-systems. They are
subject to continuous change due, in part, to the
natural phenomena of language contact and
borrowing (Campbell, 1998).
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Motivation
 According to Hall (1960), there is no such thing as a 

“pure language” – a language “without any borrowing 
from a foreign language”. 

 Although admittedly regarded as relevant factors in 
the history of a language (McMahon et al., 2005), 
borrowings bias the genetic classification of the 
languages, characterizing them as being closer than 
they actually are (Minett and Wang, 2003). 
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“Computerized approaches”
 Thus, the need for discriminating between cognates 

and borrowings emerges. 

 Heggarty (2012) acknowledges the necessity and 
difficulty of the task, emphasizing the role of the 
“computerized approaches”

 A borrowing (loanword), is defined by Campbell (1998) 
as a “lexical item (a word) which has been ‘borrowed’ 
from another language, a word which originally was not 
part of the vocabulary of the recipient language but was 
adopted from some other language and made part of 
the borrowing language’s vocabulary”
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Our approach

We address here the task of automatically 
distinguishing between borrowings and cognates: 

 given a pair of words, the task is to determine 
whether one is a historical descendant of the 
other, or whether they both share a common 
ancestor

To our knowledge, this is the first attempt of 
this kind.
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Strategy

 Input: 

 a pair of words in two different languages (x, y)

Output: 

 we want to determine whether x and y are 
cognates or if y is borrowed from x (in other 
words, x is the etymon of y).
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Strategy and parameters

 Aligning the pairs of related words using a string 
alignment algorithm (Needleman-Wunsch);

 Extracting orthographic features from the aligned 
words; 

 Training a binary classifier to discriminate between 
the two types of relationship
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Features

 Features: n-grams (n=1,2,3) + Linguistics 
parameters (POS + syllabification + STEM + 
diacritics + consonants).

 Classifiers: Naive Bayes and Support Vector 
Machines with Radial Basis Function Kernel
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Results
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Result analysis
 The two baselines produce comparable results. 

 For all pairs of languages, our method significantly 
improves over the baselines (99% confidence level)
with values between 7% and 29% for the F1 score, 
suggesting that the n-grams extracted from the 
alignment of the words are better indicators of the 
type of relationship than the edit distance between 
them. 
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Result analysis

 The best results are obtained for TR-RO, with an F1 
score of 92.1, followed closely by PT-RO with 90.1 
and ES-RO with 85.5. 

 These results show that, for these pairs of 
languages, the orthographic cues are different with 
regard to the relationship between the words. 

 For IT-RO we obtain the lowest F1 score, 69.0.
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Conclusion
We propose a computational method for 

discriminating between cognates and borrowings 
based on their orthography. 

Our results show that it is possible to identify the 
type of relationship with fairly good performance 
(over 85.0 F1 score) for 3 out of the 4 pairs of 
languages we investigate.

 The method we propose is language-independent, 
but we believe that incorporating language-specific 
knowledge might improve the system’s 
performance. 
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Word production
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Producere de cuvinte (submitted, work in progress)

 Putem determina forma in care cuvinte viitoare vor
intra intr-o limba tinta din alte limbi sursa?

 Rezultate preliminare pe Romana ca limbă tinta si 20
de limbi sursa.

 Comportament mai bun al limbilor cu influenta
culturala, nu neaparat genetica.

 Diferente semnificative de predictie pentru producerea
de cognates vs producerea de etimons.
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Rezultate preliminare
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Overview

• Natural langauges similarity: motivation and approaches

• Romance syllabic similarity: motivation, approach, results

• Orthographic similarity: motivation and approach

• Computing degrees of similarity

• Results on 3 Romanian corpora from different historical periods

• Results on Europarl (Romanian subcorpus)

• Conclusions and future work
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Language similarity

• The similarity of natural languages is a fairly vague notion, both
linguists and non-linguists having intuitions about which languages
are more similar to which others [McMahon and McMahon, 2003].

• Four types of similarity: typological, morphological, syntatic, lexical
[Homola and Kubon, 2006].

• It is necessary to develop quantitative and computational methods in
this field [McMahon and McMahon, 2003].
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Applications

• Linguistic phylogeny reconstruc-
tion [Alekseyenko et al, 2012;
Barbançon et al, 2013].

• Machine translation [Koppel and
Ordan, 2011].

• Language acquisition [Benati and
VanPatten, 2011].

• Language intelligibility assess-
ment [Gooskens et al, 2008].
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Syllabic similarity

• The more alike the languages sound, the more similar they are.

• When listeners hear a language for the first time, it is plausible that
they can distinguish and individualize syllables.

• We investigate the syllabic similarities of the Romance languages
based on the syllables excerpted from the representative vocabularies
of seven Romance languages:

• Latin, Romanian, Italian, Spanish, Catalan, French and Portuguese.

Liviu P. Dinu | On The Natural Languages Similarity | 5



Strategy

• The representative vocabularies of seven Romance languages are syl-
labified.

• For each vocabulary, a ranking of syllables is constructed: the most
frequent syllable of the vocabulary is placed on the first position, the
next frequent syllable is placed on the second position , and so on.

• Then each of the seven Romance languages is compared to the other
six (using the rank distance), each comparison having a graphic as a
result.
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Number of syllables

% covered by the first ... syllables # syllables
Language 100 200 300 400 500 561 type token

Latin 72% 86% 92% 95% 98% 100% 561 3922

Romanian 63% 74% 80% 84% 87% 90% 1243 6591

Italian 75% 85% 91% 94% 96% 97% 803 7937

Portuguese 69% 84% 91% 95% 97% 98% 693 6152

Spanish 73% 87% 93% 96% 98% 99% 672 7477

Catalan 62% 77% 84% 88% 92% 93% 967 5624

French 48% 61% 67% 72% 76% 78% 1738 5691
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Results

• If we look at the first 300 sylla-
bles, Romanian is closest to Ital-
ian, followed by Spanish, Catalan
and Portuguese.

• It can be observed that almost
every time Romanian finds itself
at the biggest distance from the
other languages.
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Ortographic approach

• A language L1 is closer to a language L2 when texts written in L2 are
easier understood by speakers of L1 without prior knowledge of L2.

• When people read a text in a foreign language, they first identify the
words which resemble words from their native language.

• Two types of related words:

• Word-etymon pairs

• Cognate pairs

victoria (lat.)

victorie (ro.)

ety
mo
n etymon

cognates vittoria (it.)
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Orthographic similarity

• Some pairs of related words are closer than others.

• Word-etymon pairs:

lună (ro.), luna (lat.) vs. bătrân (ro.), veteranus (lat.)

• Cognate pairs:

vânt (ro.), vent (fr.) vs. castel (ro.), château (fr.)
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Algorithm and methodology

Input: corpus C in L1

1. Text processing

1.1. Remove stop words
1.2. Lemmatize

2. Language relationships identification

2.1. Detect etymologies
2.2. Identify cognates
2.3. Cluster by language families

3. Language similarity computation

3.1. Measure word distances
3.2. Compute degrees of similarity

Output: similarity hierarchy for L1
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Similarity method

Definition
Given a string distance ∆, we define the dis-
tance between languages L1 and L2 (with fre-
quency support from corpus C in L1) as fol-
lows:

∆(L1, L2) = 1−
Nlingua

Nwords
+

∑Nlingua
i=1

∆(wi , xi )

Nwords

(1)

Definition
The similarity between L1 and L2 is:

Sim(L1, L2) = 1− ∆(L1, L2) (2)

λ
λ

λ
λ

etymology

etymology

cognates

cognates

Lingua (L2 )C (L1 )

Nlingua

Nwords - Nlingua

|C| = Nwords, |Lingua| = Nlingua

xi1

xj1

xk1

wi1

wj1

xi2

xj2

wi2

wj2

xk2
xk3

xk4
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Etymology detection

• We extract etymologies from electronic dictionaries.

Pattern
〈abbr class="abbrev" title="limba language name"〉

language abbreviation
〈/abbr〉
〈b〉 etymon 〈/b〉

Entry
〈b〉 capitol 〈/b〉

〈abbr class="abbrev" title="limba italiana"〉
it.

〈/abbr〉
〈b〉 capitolo 〈/b〉
〈abbr class="abbrev" title="limba latina"〉

lat.
〈/abbr〉
〈b〉 capitulum 〈/b〉
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Cognate identification

Ø

(w,t)

(w,e)

L1 
dictionaries

Google
Translate

w  has  L2 

etymology 

and
etymon  e

translate  w 
in L2  =>  t

input word 
w  in  L1

YES

YES

NO

NO

determine 

etymologies 

and etymons 
for  w

L2 
dictionaries

determine 

etymologies 

and etymons 
for  t

w  and  t  
have common 

etymology 

and ancestor
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Orthographic metrics

• We use string similarity metrics to compute the orthographic similarity
between related words.

• Many methods have been used so far, but we cannot say which is the
most appropriate for a given task.

• We use three orthographic metrics and compare their results.

Liviu P. Dinu | On The Natural Languages Similarity | 18



Orthographic metrics

The edit distance

∆(wi , wj ) =
LD(wi , wj )

max(|wi |, |wj |)
(3)

where LD(wi , wj ) is the number of operations
required to transform wi in wj .

The longest common subsequence ratio

∆(wi , wj ) =
LCS(wi , wj )

max(|wi |, |wj |)
(4)

where LCS(wi , wj ) is the longest common
subsequence of wi and wj .

The rank distance
Given two rankings L1 = (x1, x2, ..., xn) and L2 = (y1, y2, ..., yn), and V (L1), V (L2) their alphabets, the rank
distance is defined as follows:

∆(L1, L2) =

∑
x∈V (L1)∩V (L2)

|ord(x|L1)− ord(x|L2)| +

∑
x∈V (L1)\V (L2)

ord(x|L1) +

∑
x∈V (L2)\V (L1)

ord(x|L2)

(5)
where ord(x|L) is the rank of x in ranking L, in a Borda sense. To extend the distance to words, we index each

character with a number equal to the number of its previous occurrences in the given word. For normalization, we
divide the rank distance by the maximum possible value between wi and wj : |wi |(|wi | + 1)/2 + |wj |(|wj | + 1)/2.
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Application: Romanian

• Romanian is a Romance language,
surrounded by Slavic languages.

• Its communication with the Ro-
mance kernel was difficult.

• Its position in the Romance family is
controversial, either isolated or more
integrated within the group [McMa-
hon and McMahon, 2003].
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Common ancestors

FR IT ES PT TR
Arabic - 10 15 13 4
English 3 57 94 195 158
French - 547 455 1,925 1,157
German - 16 14 10 -
Greek - 221 - 1,366 410
Hebrew - - 1 - -
Italian 1 - 143 238 -
Latin 475 2,606 4,874 5,815 572
Persian - 1 - 2 -
Polish - - - 2 -
Portuguese - 3 - - -
Provencal - 1 3 4 -
Russian - 4 - 6 -
Spanish - 34 - 72 -
Turkish - 3 - 6 -
Total 479 3,503 5,599 9,654 2,301
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Datasets

• 17th and 18th century: Romanian chronicles. (Chronicles)
• 19th century: the publishing works of the Romanian poet Mihai

Eminescu. (Eminescu)
• 21st century: the parliamentary debates held in the Romanian

Parliament. (Parliament)

• The basic Romanian lexicon. (RVR)

#words #stop words #lemmasDataset token type token type type
Parliament 22,469,290 162,399 14,451,178 214 40,065
Eminescu 870,828 65,742 565,396 212 21,456
Chronicles 253,786 28,936 170,582 193 8,189
RVR 2,464 2,464 124 124 2,252
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Etymology detection evaluation

• We compare the manually determined etymologies with the automat-
ically obtained etymologies on samples of 500 words.

• We evaluate the languages for which we determine both etymologies
and cognate pairs:

• Romanian 95.8%

• French 96.8%

• Italian 97.8%

• Spanish 96.6%

• Portuguese 97.0%

• Turkish 96.0%

• English 97.2%
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Diacritics

• Many words have undergone transformations by the augmentation of
language-specific diacritics when entering a new language.

• From an orthographic perspective, the resemblance of words is higher
between words without diacritics.

amiciţie (ro.), amitié (fr.) vs. amicitie (ro.), amitie (fr.)

• In Romanian, five diacritics are used today: ă, â, ı̂, ş, ţ.

• We create two versions of each dataset: with and without diacritics.
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Results for the Romanian datasets
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Ranking of similarity

Parliament Eminescu Chronicles RVR
Language %w e e+c %w e e+c %w e e+c %w e e+c

French 70.6 45.5 46.0 57.2 35.2 36.1 36.7 20.3 21.1 50.6 30.3 31.4

Latin 63.7 40.2 — 59.9 34.6 — 44.9 24.2 — 56.5 34.0 —

Italian 48.5 28.1 33.4 44.7 26.9 30.2 31.7 19.6 20.3 41.4 23.4 26.2

Spanish 40.2 9.2 24.9 38.1 10.9 21.2 29.7 11.9 15.1 32.5 9.0 19.5

Portuguese 35.0 8.3 22.1 31.3 9.6 18.5 28.3 12.2 16.3 29.3 8.6 17.4

English 22.1 2.2 14.0 18.8 1.1 9.9 11.3 1.3 5.9 14.3 1.6 10.3

Provencal 17.7 9.6 — 20.7 11.3 — 21.8 13.0 — 16.8 9.7 —

German 9.2 5.8 — 6.9 4.5 — 4.9 2.4 — 10.2 6.3 —

Turkish 7.7 0.9 5.4 6.6 1.7 4.5 5.6 2.9 3.7 7.4 1.6 5.0

Russian 5.9 3.7 — 6.5 4.0 — 7.5 4.3 — 9.0 5.4 —
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Romanian evolution
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Language families
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Surrounding languages

Parliament Eminescu Chronicles RVR
Language %w d nd %w d nd %w d nd %w d nd

Turkish 7.7 5.4 5.6 6.6 4.5 4.7 5.6 3.7 3.9 7.4 5.0 5.3

Russian 5.9 3.7 4.0 6.5 4.0 4.4 7.5 4.3 4.9 9.0 5.4 6.2

Albanian 4.8 2.6 3.0 6.7 3.7 4.0 9.1 4.9 5.3 8.4 4.2 4.8

Bulgarian 4 2.6 3.0 7.4 4.7 5.5 10.6 6.8 7.8 11.8 7.2 8.4

Slavic 4.9 2.3 2.5 6.6 3.4 3.8 12.1 6.5 7.7 9.8 5.0 5.7

Old Slavic 3.8 2.2 2.7 6.1 3.3 4.3 11.9 6.8 8.7 9.5 5.2 6.0

Hungarian 2.9 1.8 2.0 5.1 2.9 3.3 7.5 4.3 4.7 7.4 3.7 4.6

Serbian 2.6 1.4 1.6 5.8 3.0 3.4 8.9 5.0 5.5 8.6 5.2 6.0

Polish 1.3 0.7 0.8 2.2 1.2 1.5 4.3 2.2 2.6 4.3 2.5 2.8

Serbo-Croatian 0.3 0.1 0.1 0.6 0.3 0.3 1.1 0.5 0.5 1.6 0.8 0.9

Ukrainian 0.0 0.0 0.0 0.1 0.0 0.0 0.6 0.3 0.3 0.4 0.3 0.3
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Orthographic metrics

• Are the differences between the results obtained with each metric
statistically significant?

• ANOVA hypothesis tests on samples of 5,000 words.
• The mean computed values for the three metrics are not all equal.

• Pairwise t-tests with Bonferonni correction for the p-value.
• The differences between the metrics are statistically significant, but

they are small.

• There is a high correlation between the similarity rankings (ρ > 0.98
for each pair of metrics).
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Further experiments

• We use Europarl [Koehn, 2005] - the Romanian subcorpus.

• We investigate two questions:

• Are degrees of similarity between Romanian and other languages con-
sistent across different corpora from the same period?

• Are there differences between the overall degrees of similarity (the
bag-of-words model) and those obtained at sentence level?
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Further experiments

• We conduct four experiments:

• Exp. #1: we use the bag-of-words model on Europarl.

• Exp. #2: we aggregate sentence-level rankings of similarity.

• Exp. #3: we remove outliers (regarding the sentence length).

• Exp. #4: we remove outliers (regarding the degrees of similarity).
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Results for Europarl
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Results for Europarl

Language Parl. Exp. #1 Exp. #2 Exp. #3 Exp. #4

French 45.5 53.1 52.1 52.1 52.8

Latin 40.2 44.1 43.6 43.6 44.0

Italian 33.4 40.6 39.9 39.9 40.2

Portuguese 22.1 33.6 32.9 32.8 33.2

Spanish 24.9 27.6 27.3 27.3 26.8

English 14.0 16.0 15.7 15.7 15.1

Provencal 9.6 10.0 10.1 10.1 9.3

Turkish 5.4 6.3 6.2 6.1 5.7

German 5.8 5.9 5.8 5.8 5.3

Greek 2.9 4.4 4.3 4.3 3.8
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Language similarity

Cu un kil de carne de vacă nu mori de
foame, cu un litru de vin nu mori de
sete1. (ro)

Con un chilo di carne di vaca non
morire di fame, con un litro di vino
non morire di sete. (it)

Com um quilo de carne de vaca não
morrer de fome, com um litro de vinho
não morrer de sede. (pt)

Con un kilo de carne de vacuno no
morirse de hambre, con un litro de
vino no morir de sed. (es)

1With a kilo of beef one does not starve, with a liter of wine one does not die of thirst. (en)
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Conclusions

• We proposed a computational method for determining cross-language
orthographic similarity.

• We applied the method on Romanian corpora from different historical
periods.

• We plan to extend our analysis to other languages as well, as we gain
access to resources.

• We plan to combine the orthographic approach with syntactic and
semantic evidence for a wider perspective on language similarity.

Liviu P. Dinu | On The Natural Languages Similarity | 36



References

• Anca Dinu, Liviu P. Dinu, 2005. On the syllabic similarities of Ro-
mance languages. In Proc. CICLing 2005, p. 785-788, Mexico City,
Mexico, February 13-19.

• Alina Ciobanu, Liviu P. Dinu, 2014. On the Romance Languages
Mutual Intelligibility. In Proc. LREC 2014, p. 3313-3318, Reykjavik,
Iceland, May 26-31.

• Alina Maria Ciobanu, Liviu P. Dinu, 2014. An Etymological Approach
to Cross-Language Orthographic Similarity. Application on Roma-
nian. In Proc. EMNLP 2014, p. 1047-1058, Doha, Qatar, October
25–29.

Liviu P. Dinu | On The Natural Languages Similarity | 37



Thank you!
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Corpus Linguistics
 Corpus linguistics is a study of language and a

method of linguistic analysis which uses a
collection of natural or “real word” texts known as
corpus.

What Corpus Linguistics Does:

 Gives an access to naturalistic linguistic
information, “real word” texts which are mostly
a product of real life situations. This makes
corpora a valuable research source for grammar,
semantics, dialectology, sociolinguistics,
stylistics, etc.
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Corpus Linguistics (2)

 Facilitates linguistic research.

 Electronically readable corpora have
dramatically reduced the time needed to find
particular words or phrases.

 A research that would take days or even years to
complete manually can be done in a matter of
seconds with the highest degree of accuracy.
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Corpus Linguistics (3)

 Enables the study of wider patterns and
collocation of words.

 Before the advent of computers, corpus linguistics
was studying only single words and their
frequency.

Modern technology allowed the study of wider
patters and collocation of words.

4



Corpus Linguistics (4)
 Allows analysis of multiple parameters at the

same time.

 Various corpus linguistics software programmes
and analytical tools allow the researchers to
analyse a larger number of parameters
simultaneously.

 In addition, many corpora are enriched with
various linguistic information such as
annotation.
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CL...

 Facilitates the study of the second language.

 Study of the second language with the use of 
natural language allows the students to get a better 
“feeling” for the language and learn the language 
like it is used in real rather than “invented” 
situations.

6



Corpus Linguistics
 What Corpus Linguistics Does Not:

 Does not explain why.

 The study of corpora tells us what and how
happened but it does not tell us why the
frequency of a particular word has increased
over time for instance.

 Does not represent the entire language.

 Corpus linguistics studies the language by using
randomly or systematically selected corpora.
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CL...

 They typically consist of a large number of naturally 
occurring texts, however, they do not represent the 
entire language. 

 Linguistic analyses that use the methods and tools of 
corpus linguistics thus do not represent the entire 
language.
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Corpus Linguistics
 ﻿﻿﻿﻿Application of Corpus Linguistics:

Lexicography. Corpus linguistics plays an 
important role in compiling, writing and 
revising dictionaries as within a few 
seconds, the linguist can get examples of 
words or phrases from millions of spoken 
and written texts. 

Grammar. The huge amount of texts offers 
a reliable representation of the language to 
be able to conduct grammatical research as 
well as to test theoretical hypotheses.

9



CL. Applications
 Sociolinguistics. Corpus Linguistics offers a 

valuable insight into how language varies from 
place to place and between different social 
groups.

 Translation studies. Corpora which contain 
texts in several different languages are a 
valuable tool for translators as they make it 
easy to determine how particular words and 
their synonyms collocate and differ in practical 
use.

10



Corpus Linguistics. Applications
 Language learning/teaching. A growing

number of textbooks which are used for
language learning/teaching contain texts from
corpora rather than “invented” situations
because they expose the students to real life
situations.

 Stylistics. For genres such as the language used
by politicians, pop culture, advertising industry,
etc., corpora as an important source of
information.

11



CL. Applications...
Dialectology. The texts included in corpora are

in their original form, including dialect which
gives the linguists a priceless insight into
geographical variation of a language.

Historical linguistics. Historical corpora offer
an easy access to virtually all known historic
books and manuscripts in electronic form.

12



Corpus Linguistics
 Notable Corpora:

 Brown Corpus (the Brown Standard Corpus
of Present-Day American English). It
contains about 500 English texts that total about
1 million words compiled in the 1960s. It is
rather small, but it is the first modern and
electronically readable corpus.

13



Notable corpora

 British National Corpus. It consists of a wide
range of written and spoken texts in English
language, totalling 100 million words. Since
1994.

Oxford English Corpus. It is a huge corpus of
English language totalling over 2 billion words.
The texts included in the corpus are taken from
all sorts of sources, ranging from literary works
to the language in forums and chatrooms.

14



Notable corpora
 American National Corpus. It is the American 

English equivalent to the British National Corpus, 
however, it only contains about 22 million words of 
American English spoken and written texts., but it is 
richly annotated. It is being developed since 1990.

 International Corpus of English. It consists of a 
set of corpora which contain variations of English 
language from countries where English is either the 
first or official second language. Each set of the 
International Corpus of English contains 1 million 
word texts that have been created after the year 1989.

15



Notable corpora

 Scottish Corpus of Texts and Speech. The 
collection of written and spoken texts in 
Scottish English and Scots after 1940 is available 
online for free since 2004. In 2007, the corpus 
reached a total of 4 million words. 

WaCky 2 billion words

16



Corpus Linguistics

 Out of the many possible aplications of Corpus
Linguistics, we will chose lexical semantics
(Generative Lexicon, Pustejovsky 1995) and
Distributional Semantics (Baroni 2010).

 The course will focuse on Formal vs. Distributional
Semantics

17



Reference/Sense distinction
 Frege: Linguistic signs have a reference and a sense:

 (i) “Mark Twain is Mark Twain” vs. (ii) “Mark Twain 
is Samuel Clemens”.

 (i) same sense and same reference vs. (ii) different 
sense and same reference.

 Both the sense and reference of a sentence are built 
compositionally.

 Formal Semantics studies “meaning” as “reference”.

 Distributional semantics focuses on “meaning” as 
“sense” leading to the “language as use” view.

18



Formal vs. Distributional Semantics
Focus of FS: Focus of DS:

Grammatical words: 
• prepositions, 
• articles, 

quantifiers, 
• coordination, 
• auxiliary verbs,
• Pronouns,
• negation

Content words: 

• nouns, 

• adjectives, 

• verbs.
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Formal Semantics
 Formal semantics gives an elaborate and elegant

account of the productive and systematic nature of
language.

 The formal account of compositionality relies on:

 words (the minimal parts of language, with an
assigned meaning)

 syntax (the theory which explains how to make
complex expressions out of words)

 semantics (the theory which explains how
meanings are combined in the process of
particular syntactic compositions).

20



Formal Semantics

Theory of Meaning

A theory of meaning is understood as providing a
detailed specification of the knowledge that a
native speaker has about his/her own language.
[Dummett, 91]
In doing this, a theory of meaning has to provide a
way to assign meaning to all the different words in
the language and then a mechanism by means of
which all these meanings can be combined into
larger expressions to form the meaning of phrases,
sentences, discourses, and so on.
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Formal Semantics
Truth-conditional semantics program

To state the meaning of a sentence we should state which
conditions must be true in the world for this sentence to be
true.

e.g. Every man loves a woman.

Truth-conditions:
For each member “x” of the set of men, there should be at
least one member “y” of the set of women, in such a way
that the pair <x,y> is in the relation loves.

Logic:
x.(man(x)  y.(woman(y)  loves(x,y)))
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Formal Semantics
Frege’s Compositional Semantics

The meaning of the sentence is determined by the
meaning of the words of which it is composed, and
the way in which these are put together.

The linear order of the words in a sentence hide the
role that different kinds of words play in the
building of the meaning of the whole.

23



Formal Semantics
Syntactic structure

John   likes
Mary

PN PNVt

NP
NP

VP

S

Det PNVt

NP

NP
VP

S

Every man likes Mary

Noun

x.(man(x)  likes(x, 
mary))

like(john, 
mary) 24



Formal Semantics
 Semantic Structure

 Formal Semantics uses Lambda Calculus as a means of
combining meaning guided by the syntactic
operations.

25



Formal Semantics

Det PNVt

NP

P.Q.x.(P(x)  Q(x)) w.man(w)    x.y.likes(x,y)    
P.P(mary)

Noun

x.(man(x)  likes(x, mary))

z.likes(z,mary)

Q.x.(man(x)  Q(x))

Every man likes Mary
26



Distributional Semantics

 You shall know a word by the company it keeps
(Firth);

 The meaning of a word is defined by the way it is used
(Wittgenstein).

 This leads to the distributional hypothesis about word
meaning:

 the context surrounding a given word provides
information about its meaning;

 words are similar if they share similar linguistic
contexts;

 semantic similarity = distributional similarity.
27



Distributional Semantics
 Examples of similar words:

 “astronaut” and “cosmonaut”

 “car” and “automobile”

 “banana” and “apple” (these two are less similar)

 “huge” and “large”,

 “eat” and “devour”

 Not similar: 

 “car” and “flower”, 

 “car” and “pope”

28



Distributional Semantics
 For example, if one word describes a given

situation

 “I’m on the highway”

 then it is very likely that the other word also
describes this situation

 “I’m in a car”

 Distributional semantics is an approach to
semantics that is based on the contexts of words
and linguistic expressions in large corpora.
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Distributional Semantics
 Take a word and its contexts. By looking at a word's 

context, one can infer its meaning

 tasty tnassiorc

 greasy tnassiorc

 tnassiorc with butter

 tnassiorc for breakfast

FOOD

30



Distributional Semantics
 He filled the wampimuk, passed it around and we all 

drunk some

 We found a little, hairy wampimuk sleeping behind 
the tree

DRIN
K

ANIMA
L
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Distributional Semantics
DS accounts for different uses of words (like in Generative Lexicon). Take “brown” 

for example. Each adjective acts on nouns in a different way:

“In order for a cow to be brown most of its body's surface should be brown,
though not its udders, eyes, or internal organs. A brown crystal, on the other
hand, needs to be brown both inside and outside. A book is brown if its cover,
but not necessarily its inner pages, are mostly brown, while a newspaper is
brown only if all its pages are brown. For a potato to be brown it needs to be
brown only outside. . . Furthermore, in order for a cow or a bird to be brown
the brown color should be the animal's natural color, since it is regarded as
being `really' brown even if it is painted white all over. A table, on the other
hand, is brown even if it is only painted brown and its `natural' color
underneath the paint is, say, yellow. But while a table or a bird are not brown if
covered with brown sugar, a cookie is. In short, what is to be brown is dieffrent
for dieffent types of objects. To be sure, brown objects do have something in
common: a salient part that is wholly brownish. But this hardly suffices for an
object to count as brown. A signficant component of the applicability condition
of the predicate `brown' varies from one linguistic context to another.” (Lahav
1993:76)
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Distributional Semantics

 What happens with brown is replicated by the large
majority of adjective-noun combinations. Treating them
all like `idioms' would mean to turn the exception into
the rule.

 As it is easy to see, many of the problems come from the
lexicon of content words, such as nouns, verbs and
adjectives, and not from grammatical terms.

33



Distributional Semantics
 Of course, there have been important attempts to

tackle the lexicon problem from the point of view of
formal semantics, like Pustejovsky's (1995) theory of
the Generative Lexicon.

 More recently, Asher (2011) has approached lexical
semantics with a theory of predication that uses a
sophisticated system of semantic types, plus a
mechanism of type coercion.
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Distributional Semantics
 However, the problem of lexical semantics is primarily a

problem of size: even considering the many subregularities
found in the content lexicon, a hand-by-hand analysis is
simply not feasible.

 The problem of assigning reasonable (if not exhaustive)
syntactic structure to arbitrary, real-life sentences is
perhaps equally hard. Here, however, technology has been
an important part of the answer: Natural language parsers,
that automatically assign a syntactic structure to sentences,
have made great advances in recent years by exploiting
probabilistic information about parts of speech (POS tags)
and syntactic attachment preferences.
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Distributional Semantics

 Tasks where DS has been successful: 

Word similarity, 

 Information retrieval,

Question Answering,

 Entailment, etc.
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Distributional Semantics
 Two words are neighbors if they cooccur.

 The cooccurrence count of words w1 and w2 in 
corpus G is the number of times that w1 and w2 
occur:

 in a linguistic relationship with each other (e.g., 
w1 is a modifier of w2) or

 in the same sentence or

 in the same document or

 within a distance of at most k words (where k is 
a parameter)
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Distributional Semantics
 corpus = English Wikipedia

 cooccurrence defined as occurrence within k = 10 
words of each other:

 cooc.(rich,silver) = 186

 cooc.(poor,silver) = 34

 cooc.(rich,disease) = 17

 cooc.(poor,disease) = 162

 cooc.(rich,society) = 143

 cooc.(poor,society) = 228

38



Distributional Semantics

 cooc.(poor,silver)=34, cooc.(rich,silver)=186,

 cooc.(poor,disease)=162, cooc.(rich,disease)=17,

 cooc.(poor,society)=228, cooc.(rich,society)=143
39



Distributional Semantics
 The similarity between two words is usually measured 

with the cosine of the angle between them.

 Small angle: silver and gold are similar.

40



Distributional Semantics
 Up to now we’ve only used two dimension words: rich 

and poor.

 Now do this for a very large number of dimension 
words: hundreds or thousands.

 This is now a very high-dimensional space with a large
number of vectors represented in it.

 Note: a word can have a dual role in word space.

 Each word can, in principle, be a dimension word, an 
axis of the space.

 But each word is also a vector in that space.
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Distributional Semantics
 We can compute now the nearest neighbors of any

word in this in word space.

 Nearest neighbors of “silver”:

1.000 silver / 0.865 bronze / 0.842 gold / 0.836 medal /
0.826 medals / 0.761 relay / 0.740 medalist / 0.737
coins / 0.724 freestyle / 0.720 metre / 0.716 coin / 0.714
copper / 0.712 golden / 0.706 event / 0.701 won / 0.700
foil / 0.698 Winter / 0.684 Pan / 0.680 vault / 0.675
jump
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Distributional Semantics
 Nearest neighbors of “disease”:

1.000 disease / 0.858 Alzheimer / 0.852 chronic /
0.846 infectious / 0.843 diseases / 0.823 diabetes /
0.814 cardiovascular / 0.810 infection / 0.807
symptoms / 0.805 syndrome / 0.801 kidney / 0.796
liver / 0.788 Parkinson / 0.787 disorders / 0.787
coronary / 0.779 complications / 0.778 cure / 0.778
disorder / 0.778 Crohn / 0.773 bowel
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Distributional Semantics
 Cases where simple word space models fail:

 Antonyms are judged to be similar: “disease” and “cure”

 Ambiguity: “Cambridge”

 Homonimy: ”bank”

 Non-specificity (occurs in a large variety of different
contexts and has few/no specific semantic associations):
“person”
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Distributional Semantics
 The vectors in our space have been words so far.

 But we can also represent other entities like: phrases, 
sentences, paragraphs, documents, even entire books.

 Compositionality problem: how to obtain the 
distribution vector of a phrase?
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Distributional Semantics-
from words to phrases
 Option 1: The distribution of phrases – even sentences

– can be obtained from corpora, but...
 those distributions are very sparse;

 observing them does not account for productivity in
language.

 Option 2: Use vector product of two or more words to
compute the phrase distribution, but...
 Multiplication is commutative in a word-based model:
 [[The cat chases the mouse]] = [[The mouse chases the cat]].

 Multiplication is intersective – problem for non-
intersetive adjectives:
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Distributional Semantics
 Adjective types, Partee (1995)

 Intersective:carnivorous mammal

 ||carnivorous mammal|| = ||carnivorous|| ∩
||mammal|

 Subsective: skilful surgeon

 ||skilful surgeon||ϲ||surgeon||

 Non-subsective: former senator

 ||former senator|| ≠ ||former|| ∩ ||senator||

 ||former senator|| ₵ ||senator||
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Distributional Semantics
 DS Strengths:

 fully automatic construction;
 representationally simple: all we need is a corpus and some

notion of what counts as a word;
 language-independent, cognitively plausible.

 DS Weaknesses:
 no generative model
 many ad-hoc parameters
 ambiguous words: their meaning is the average of all senses
 context words contribute indiscriminately to meaning;

[[The cat chases the mouse]] = [[The mouse chases the cat]].
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Example

"Light: a multilingual distributional 
analysis"
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Abordare
• Lumina? Analiza distributionala in texte

religioase si texte politice.

• Limbi: romana, engleza, franceza.

• Corpus: Vechiul Testament, Noul
Testament, Europarl (discursurile din 
parlamentul european)
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Metoda
• Determinam si analizam sinonimele 

cuvantului lumina

• Determinam si analizam antonimele 
cuvantului lumina

• Analizam si comparam contextele in care 
apar acestea
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lumină / light / lumière  - frecvența în 
Biblie
 Romana: Lumină – 308 apariții

 Frecvența medie a cuvintelor în Biblie în limba română: 37,41

 Lumină apare de 8,23 ori mai frecvent decât media

 Engleza: Light – 307 apariții

 Frecvența medie a cuvintelor în Biblie în limba engleză: 44,38

 Light apare de 6,91 ori mai frecvent decât media

 Franceza: Lumière – 193 apariții

 Frecvența medie a cuvintelor în Biblie în limba franceză: 
38,93

 Lumière apare de 4,95 ori mai frecvent decât media
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lumină / light / lumière - frecvența în
Europarl

 Lumină – 591 apariții

 Frecvența medie a cuvintelor în Europarl în limba română: 
140,55

 Lumină apare de 4,20 ori mai frecvent decât media

 Light – 1312 apariții (frecvent ca “in light of...”)

 Frecvența medie a cuvintelor în Europarl în limba engleză: 
163,39

 Light apare de 8,02 ori mai frecvent decât media

 Lumière – 872 apariții

 Frecvența medie a cuvintelor în Europarl în limba franceză: 
163,6

 Lumière apare de 5,33 ori mai frecvent decât media
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întuneric / dark(ness) / ténèbres -

frecvența în Biblie
 Întuneric/întunerec – 154 apariții

 Întunecat – 46 apariții

 Frecvența medie a cuvintelor în Biblie română: 37,41

 Întuneric/întunerec/întunecat apare de 5,34 ori mai frecvent
decât media

 Dark(ness) – 206 apariții

 Frecvența medie a cuvintelor în Biblie în engleză: 44,38

 Dark(ness) apare de 4,58 ori mai frecvent decât media

 Ténèbres – 151 apariții

 Frecvența medie a cuvintelor în Biblie în franceză: 38,93

 Ténèbres apare de 3,87 ori mai frecvent decât media
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întuneric / dark(ness) / obscurité -
frecvența în Europarl
 Întuneric/întunecat – 96 apariții

 Frecvența medie a cuvintelor în Europarl în română: 140,55

 Întuneric/întunecat apare de 1,46 ori mai rar decât media

 Dark(ness) – 100 apariții; darker: 5; darkest: 10

 Frecvența medie a cuvintelor în Europarl în limba engleză: 163,39

 Dark(ness) apare de 1,63 ori mai rar decât media

 Obscure/obscurité – 41 apariții

 Frecvența medie a cuvintelor în Europarl în franceză: 163,6

 Obscure/obscurité apare de 3,99 ori mai rar decât media
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Cele mai frecvente sinonime în 
Biblie

Sinonim Frecvența

străluci 137

lume 270

vedere 93

strălucire 5

lumânare 1

Sinonim Frecvența

fall 267

clean 138

faint 54

loose 65

bright 51

Sinonim Frecvența

jour 1927

vie 619

gloire 428

feu 512

éclat 102

Totalul frecvențelor sinonimelor:

 Lumină: 508

 Light: 812

 Lumière: 5097
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Cele mai frecvente sinonime în 
Europarl

Sinonim Frecvența

străluci 60

lume 6156

vedere 13168

watt 1

lumânare 5

Sinonim Frecvența

clear 10430

clean 414

enlighten 52

short 1482

weak 743

Sinonim Frecvența

raison 8327

vérité 3148

jour 5774

évident 3392

vie 5791

Totalul frecvențelor sinonimelor:

 Lumină: 19391

 Light: 14793

 Lumière: 36636
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Lumină vs întuneric

Noul Testament
Vechiul 

Testament

freq(lumină) / 
freq(întuneric) 1,92 1,35

freq(light)/
freq(dark) 1,85 1,35

freq(lumière)/
freq(ténèbres) 1,43 1,19
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Future work

Noi interpretari.

Dezambiguizarea sensurilor.

Analiza contextelor.

Analiza polaritatilor textelor: sunt unele
texte mai optimiste decat altele?
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Readability. Definition
 Readability is the ease with which a written text 

can be understood by a reader.

 The problem that we address here is whether 
human translation has impact on readability.

We investigate the main shallow, lexical and
morpho-syntactic features.
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Methodology
 Given a text T1 in a target language L1 and the texts 

in source languages L2,...,Ln, how does the 
readability level vary from a text written in the 
native language of a speaker and a text translated 
into the same language? 

 Is the original text more comprehensible?

We consider English as the target language, i.e., we 
investigate texts written (or translated) in English
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Flesch-Kincaid
 We employ the Flesch-Kincaid measure, which assesses 

readability based on the average number of syllables per 
word and the average number of words per sentence:

0.39 *total words/total sentences+11.8*total syllables/total words

- 15.59

 The Flesch-Kincaid formula produces values which 
correspond with U.S. Grade levels.
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Approach
We run our experiments on Europarl, a 

multilingual parallel corpus extracted from the 
proceedings of the European Parliament

 To obtain the dataset for our experiments, we 
extract segments of text written inEnglish, we 
identify their source languages, and we group 
them based on the language of the speaker. 
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We compute the Flesch-Kicaid formula for each 
collection of segments of text Ti having the source 
language Li and the target language English.
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Experiments and Results

 In a first experiment, we compute the Flesh-Kincaid 
metric for each language, for all the concatenated
files in the English Europarl subcorpus



Results

9

One can notice that the lowest Flesh-Kincaid value 
belongs to the collection of texts having English as 
the source language, followed by:

 texts having Germanic source languages, 

 texts having Slavic source languages and, finally,

 texts translated from Romance languages. 



 Finno-Ugric languages are the only family that
doesn’t form a cluster with regard to the Flesch-
Kincaid metric. 

 Among the Romance languages, French is the only 
one that sets apart from the group, being closer to 
the Germanic cluster, but this fact is justified by 
the nature of French
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3 EXperiments

 Exp1: 

 For each language, we account for the overall 
readability score computed for all documents of each 
speaker;

 based on these computed values, we determine 
outliers and remove them from the dataset; 

 then, we rerun the experiments based on Flesch-
Kincaid measure for the remaining speakers
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Experiments
 Exp2: 

 We investigate outliers for each speaker by 
computing the Flesch-Kincaid metric individually 
for each document belonging to a speaker.

We discard documents whose levels of readability 
are outliers and we compute the Flesch-Kincaid 
formula again accounting only for the documents 
having the individual level of readability in 
[LF;UF] range.
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3 Experiments
 Exp. 3: 

 In the last experiment we consider, for each 
language, the readability scores of each document 
belonging to each speaker. 

We apply the same strategy as before: we detect 
outliers among documents and remove them from 
the dataset. 

 Then, we compute Flesch-Kincaid measure again, 
for a text consisting of the concatenation of all 
remaining documents after outliers removal, for 
each language.
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Classification
We investigate the readability of translation as a 

classification problem.

 Taking as input sentences originally spoken in 
English and sentences translated from other 
languages, our goal is to see whether the 
readability features have enough discriminative
power to distinguish original from translated text. 

We train a logistic regression classifier for a binary 
decision problem: original versus translated text. 
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Methodology
We extract randomly 100 sentences originally 

spoken in English and 100 sentences originally
spoken in other languages and translated into 
English. 

We split this dataset into equal train and test 
subsets. We choose the optimal value for the 
regularization parameter performing 3-fold cross-
validation over the training set. 

 Finally, we evaluate the model on the test set.
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Results
We obtain 58% f-score on the test set in deciding 

whether a sentence was translated into English or 
was originally spoken in English. 

 The most informative feature is the average 
number of characers per word (0.69 logistic 
regression score), followed by the type/token ratio 
(-0.67 score). 

 Adding n-grams of tokens and POS tags as 
features improves the performance of the model. 
We obtain 75% f-score.
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Conclusions and feature work

We investigate the behavior of various readability 
metrics across parallel translations of texts from a 
source language to target languages.

We plan to investigate the left-right distinction
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Deception Detection
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Deception. Definition
 “To intentionally cause another person to have or 

continue to have a false belief that is truly believed 
to be false by the person intentionally causing the 
false belief by bringing about evidence on the basis 
of which the other person has or continues to have 
that false belief.” (Mahon, J.E. (2007). A Definition of Deceiving. 

International Journal of Applied Philosophy, 21, 181-194.

 No a general accepted definition
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Ingredients
 Intention

 An act of deceiving is not an act of deceiving unless
the result is that another person has a false belief.

 Deception <> Lies

 Lies definition : 

“… to make a believed-false statement with the 
intention that that statement be believed to be 
true”. (Mahon, J. E. 2008. Two Definitions of Lying. International 

Journal of Applied Philosophy, 22(2), 211-230.)
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Ingredients (2)
 Deceptive behaviour:  planned and unplanned.

 In planned interactions, people have time to think, 
reflect and compare situations with past experiences. 
They know or have time to consider knowing the 
person who they interact with.

 Planned deceits are harder to detect.

Many deceptions types, many medium of
communication

22



Deception exists in various 
forms...

23

 Fake (Armstrong)  Real (Quintana)



Traditional Approaches:
 Psychology and criminal justice have studied 

the behaviors that might be associated, with 
deception

 Three types of behavior have been examined: 

1. facial expressions and body movements;

2. vocal behaviors, including prosodic features;

3. verbal behaviors, including the words and 
structures that might correlate with 
deception.

24



Deception Detection. New trends 

 NLP approaches to address the vocal and verbal 
features that might be associated with deception

 NLP papers on the classification of narratives as 
truthful or deceptive

 Stylometric techniques, machine learning approaches 
and models of data collection and processing



EACL-2012 First Workshop on Computational Approaches 
to Deception Detection. Avignon, may 2012
http://aclweb.org/anthology-new/W/W12/W12-04.pdf
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Fake reviews detection: Ott&Tomasso



In Search of a Gold Standard in Studies of Deception
Stephanie Gokhman, Jeff Hancock, Poornima Prabhu, Myle Ott 
and Claire Cardie (Deception detection ws)
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Authorship identification

31



Authorship identification
 „ Then there is the letter he 

said I wrote him. In his 
hopeless ignorance of civilized 
conduct and the usages of 
society, he read it aloud. . . . 
but I ask you, how would you 
reply if I were to deny ever 
having sent you that letter? 
Where is your witness to 
contradict me? Would you 
prove it by the handwriting? . 
. . but how could you when the 
letter is in the hand of a 
secretary?”  (Cicero, Philippics 

II, Bailey 1986:37)

“De-acum i se va putea 
atribui oricui orice în 
incontrolabilul (sau greu 
controlabilului) mediu 
electronic. Dacă nu se vor 
pune la punct tehnici 
care să permită 
mergerea la sursa 
iniţială şi identificarea 
autorului în cazuri de 
acest fel, potenţialul de 
calomnie, fals şi minciună 
devine copleşitor.” (Mircea 

Cartarescu, 2009)
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Motivation
 The problem of authorship identification is based 

on the assumption that there are stylistic features 
that help distinguish the real author from any 
other possibility. 

 Literary-linguistic research is limited by the 
human capacity to analyze and combine a small 
number of text parameters, to help solve the 
authorship problem. 
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Motivation
We can surpass limitation problems using 

computational and discrete methods, which allow 
us to explore various text parameters and 
characteristics and their combinations.

 The text characteristics and parameters used to 
determine text paternity need not have aesthetic 
relevance. They must be objective, un-
ambiguously identifiable, and quantifiable, such 
that they can be easily differentiated for different 
authors.
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Human stylom (van Halteren et 
al, 2005)

 Stilistical Fingerprint.

 Human stylom (van Halteren et al, 2005): The set of 
language use characteristics - stylistic, lexical, 
syntactic - form the human stylom
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Standard problems (cf. S. Marcus)

1. A text attributed to one author seems 
nonhomogeneous, lacking unity, which raises the
suspicion that there may be more than one author.

2. If based on certain circumstances, arising from 
literature history, the paternity is disputed between two 
possibilities,A and B, we have to decide if A is preferred
to B, or the other way around.

36



Problems
1. A text is anonymous. If the author of a text is 

unknown, then based on the location, time frame 
and cultural context, we can conjecture who the 
author may be and test this hypothesis

2. Based on literary history information, a text 
seems to be the result of the collaboration of two 
authors, an ulterior analysis should establish, for 
each of the two authors, their corresponding text 
fragments.
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Solutions

 Two strategies:

 The first strategy is based on Support Vector 
Machines (SVM) with a string kernel

 The second one is a new strategy based on the 
similarity of rankings of function words.

38



Rankd distance and authorship
We propose Rank distance as a new distance 

measure designed to reflect stylistic similarity 
between texts. 

 As style markers we used the function word 
frequencies. 

 Function words are generally considered good 
indicators of style because their use is very unlikely 
to be under the conscious control of the author 
and because of their psychological and cognitive 
role (Chung and Pennebaker, 2007). 
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Function word
 Also function words prove to be very effective in 

many author attribution studies

 Given a fixed set of function words (usually the most 
frequent ones), a ranking of these function words 
according to their frequencies is built for each text; 
the obtained ranked lists are subsequently used to 
compute the distance between two texts. 

 To calculate the distance between two rankings we 
used Rank distance
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Function word (2)
 In all our english experiments we used the set of 70 

function words identified by Mosteller and 
Wallace (Mosteller and Wallace, 1964) as good 
candidates for authorattribution studies

 In all our Romanian experiments we used the set 
of runction words identified by (Dinu and 
Popescu)
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Method
Once the set of function words is established, for 

each text a ranking of these function words is 
computed. 

 The ranking is done according to the function 
word frequencies in the text. 

 Rank 1 will be assigned to the most frequent 
function word, rank 2 will be assigned to the 
second most frequent function word, and so on
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Distance

 The distance between two texts will be the Rank 
distance between the two rankings of the function 
words corresponding to the respective texts.

We use it as a base for a hierarchical clustering 
algorithm. 

 The family trees (dendogram) thus obtained can 
reveal a lot about the distance measure behavior
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Experiments
 We cluster a collection of 21 nineteenth century 

English books written by 10 different authors and 
spanning a variety of genres (Table 2). 

 The books were used by Koppel et al. (Koppel et al., 
2007) in their authorship verification experiments.

 the family tree produced is a very good one, accurately 
reflecting the stylistic relations between books. 
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Analyse
 The books were grouped in three big clusters (the first 

three branches of the tree) corresponding to the three 
genre: 

 dramas (lower branch), 

 essays (middle branch) 

 and novels (upper branch). 

 Inside each branch the works were first clustered 
according to their author. 
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Analyse
 The only exceptions are the two essays of Emerson 

which instead of being first cluster together and after 
that merged in the cluster of essays, they were added 
one by one to this cluster. 

 Even more, in the cluster of novels one may 
distinguished two branches clearly separated that can 
correspond to the gender or nationality of the authors: 
female English (lower part) and male American (upper 
part).
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Binary classification experiment
We tested the nearest neighbor classification 

algorithm combined with both rank distance and 
euclidean distance on the case of the 12 disputed 
federalist papers (Mosteller and Wallace, 1964). 

We followed the Mosteller and Wallace setting, 
treating the problem as a binary classification 
problem. 

 Each one of the 12 disputed papers has to be 
classified as being written by Hamilton or 
Madison. For training are used the 51 papers 
written by Hamilton and the 14 papers written by 
Madison
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Comparision
 Tested on disputed papers, the nearest neighbor 

classification algorithm combined with rank 
distance attributed all the 12 papers to Madison. 

 This matches the results obtained by Mosteller
and Wallace and is in agreement with today 
accepted thesis that the disputed papers belong to 
Madison. 

When the nearest neighbor classification 
algorithm was combined with euclidean distance 
only 11 papers were attributed to Madison, the 
paper 56 was attributed to Hamilton.
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MORE EXPERIMENTS
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Stilistic Deception. Mateiu and 
followers
Mateiu Caragiale died on 1936, at age of 51. In 1929 

he begun to works to the novel ”Sub pecetea tainei”, 
but unfortunately he died before finishing this 
novel.

Many authors attempted to write different endings 
to the novel: Radu Albala, Al. George, George 
Balan
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 In 2008, Ion Iovan published the so-called Last
Notes of Mateiu Caragiale, composed of sections
written from Iovan’s voice, and another section in 
the style of a personal diary describing the life of 
Mateiu Caragiale, suggesting that this is really
Caragiale’s diary
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Albala vs Mateiu (Dinu,Popescu&Dinu, LREC08)
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Mateiu Caragiale. Pastiche (Dinu et 

al., ws at EACL12)
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Nabokov (Dinu&Nisioi, RANLP13)
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The stilistics unity of Pauline 
Epistles

 St. Paul seems to 
dictate his letters to his 
disciples Timothy, 
Silvanus (= Silas)

 Philemon is a single
cluster (was written 
during the jail period)
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Other results

 The paternity of Eminescu 
publicistics

 Mircea Cartarescu

 Federalist Papers

 ...
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More applications...
 Temporal text classifications (EACL 2014)

Opinion mining and sentiment analysis

 Text categorization

 Political ideology detection

(more at http://www.kenbenoit.net/new-directions-in-analyzing-text-as-data-workshop-2013/)

 ...
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A receipt for happiness 
(http://www.cse.unt.edu/~rada/)

 Ingredients 

1. - Something new 

2. - Lots of food that you enjoy 

3. - Your favorite drink 

4. - An interesting social place 

 Directions : “go shop for something new ... Then have lots of food, for 

dinner preferably, as the times of breakfast and lunch are to be avoided. 
Consider also including .. your favorite drinks. Then go to an interesting 
place, it could be a movie, a concert, a party, or any other social place. 
Having fun, and optionally getting drunk... Note that you should avoid any 
unnecessary actions, as they can occasionally trigger feelings of 
unhappiness. Ideally the recipe should be served on a Saturday, for 
maximum happiness effect. 

Bon appétit! 60
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Temporal Text Ranking and 
Automatic Dating of Texts

EACL 2014, Göteborg

Vlad Niculae (Max Planck Institute for Software Systems)
Marcos Zampieri (Saarland University)
Liviu P. Dinu (University of Bucharest)
Alina Maria Ciobanu (University of Bucharest)



1. Text Dating

Estimate the writing date of a text.

 (Linguistic complement to material dating.)



1. Text Dating

Estimate the writing date of a text.

 (Linguistic complement to material dating.)

● 1930? 1899? 1823?
(Regression)
(Preoțiuc-Pietro and Cohn, 2013)

● 18th / 19th century?
(Classification)
(de Jong et al, 2005)
and our previous work
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1. Text Dating

Estimate the writing date of a text.

 (Linguistic complement to material dating.)

● Which is newer?

1899. W. Crane, A Floral Fantasy
in an Old English Garden

1667. An Account Of The Experiment Of 
Transfusion Practiced Upon A Man In London



2. This Work: Pairwise Ranking

Input: pairs of documents

Output: “≺”,  “≻”

Not all input samples need to be comparable.

1690 1740

1800

1889 1923



2. This Work: Pairwise Ranking

1690 1740

1700 − 1800

1889 1923

Input: pairs of documents

Output: “≺”,  “≻”

Not all input samples need to be comparable.
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g(d1, d2) > 0

But we want the dates, not a ranking!
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3. Behind the Scenes

Binary classification of pairs.

g(d1, d2) > 0

But we want the dates, not a ranking!

w⋅(d1 - d2) > 0

w⋅d1 > w⋅d2

Use a moment in time instead of a document:

w⋅d1  > θ(1850)



Evaluation



4. Historical Corpora

Three languages:

● Colonia Corpus of Historical Portuguese 
(Zampieri and Becker, 2013)

● Corpus of Late Modern English Texts (CLMET)
(de Smet, 2005)

● Romanian Historical Corpus
(Ciobanu et al. 2013)



5. Simple Features

A. lexical (word counts)

B. naive morphological

     (character n-grams at the end of words)

   +   feature transformation and selection



6. Results

Comparable to the regression approach

size
pairwise
score

Ridge 
pairwise
score

en 293 83.8% 83.7%

pt 87 82.9% 81.9%

ro 42 92.9% 92.4%

our system



7. Function estimation (θ)

Year

w⋅x
(projection of documents
onto a rank-preserving line)



8. Function estimation (Romanian)



9. Function estimation (English)



10. Function estimation (Portuguese)



11. Dating uncertain texts
C. Cantacuzino (1650 − 1716), Istoria Țării Rumânești

Important historical work, contested writing time.

Published: 19th century.



11. Dating uncertain texts
C. Cantacuzino (1650 − 1716), Istoria Țării Rumânești

Important historical work, contested writing time.

Published: 19th century.

We predict 1736.2 − 1753.2:



12. Conclusion & Future Work

● ranking approach to temporal modelling

● important gain on flexibility

● acceptable performance with simple features



12. Conclusion & Future Work

● ranking approach to temporal modelling

● important gain on flexibility

● acceptable performance with simple features

● application-specific feature engineering

● other historical corpora wanted!
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